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Abstract— Software tools for programming autonomous sys-
tems that are embedded in unstructured environments are
increasingly important in robotics. We introduce a layered
software architecture designed to facilitate the construction
of hierarchical models for adaptive control programs that are
learned and that can be transferred to related contexts and new
robots. We focus on the interface between a robot’s sensory
and motor resources and processes that learn autonomously
by exploring effects of the robot’s actions. We provide an
implementation of this interface called the Control Basis Ap-
plication Programming Interface (CBAPI) that is designed to
create hierarchical behavior and implicit knowledge out of
closed-loop control primitives. The CBAPI provides a natural
combinatorial means of building closed-loop controllers by com-
bining sensory and motor resources. By so doing, it supports
a variety of techniques for structuring stochastic exploration
and interactive machine learning. Moreover, it provides for a
natural implicit knowledge representation. We believe that the
CBAPI represents a programming interface for adaptive control
programs that advances the state-of-the-art in robotic software
environments.

I. INTRODUCTION

“Open environments” are unstructured environments that
cannot be completely modeled a priori. They include most
environments designed for human occupants. Robots that
perform work in open environments must learn adaptable
models of interaction that inform control decisions for
solving sensorimotor problems. Even relatively mundane
behavior can be quite sensitive to subtle variations in the run-
time context, requiring different strategies to accommodate
new constraints. Thus, the design of robot software for
open environments poses immense challenges with respect
to control, adaptation, and knowledge formation. No existing
software architectures have been developed to address these
issues directly.

Important new service-level middleware is now available
to distribute control computations and to support reliable
communication between sensory and motor resources [3],
[10], [11]. However, existing architectures do not provide
an integrated means of creating robot programs that can
be learned and refined over time or shared between het-
erogeneous communities of robots. One possible reason is
that there is no standard for organizing end-to-end behavior
all the way from devices to applications. Such a standard,
analogous to the Open System Interconnection (OSI) refer-
ence model for data networking development [17], would be

Fig. 1. A layered architecture designed to facilitate the seemless intercon-
nection between machine learning algorithms and robot control applications.

immensely useful in providing a landscape for researchers
and programmers to develop new robot applications.

In this paper, we propose a layered architecture, shown
in Figure 1, for the development of adaptive robot con-
trol programs. The device-level consists of drivers for the
robot’s sensory and motor resources. The communication
middleware provides a reliable and flexible interconnect
between sensor inputs, motor outputs, and software in the
form of services. An important class of services implements
closed-loop control circuits that map sensor inputs to motor
outputs using potential functions. The potential function
depends on sensor feedback and its gradient with respect
to motor variables define the motor outputs. The control
basis application interface (CBAPI) links the service level
and the application-level. It implements well-formed control
expressions and provides a descriptive abstraction between
robot hardware and behavioral software.

The application-level is implemented in the form of
a developmental assembler—an autonomous learner that
writes new programs from combinations of control primitives
subject to programmer guidance. The programmer provides
structured training experiences via this interface to over-
come the lack of structure in the open environment. The



programming artifacts from this process are reliable patterns
of cause and effect in the open system called schema that
are stored in long-term memory. Schemas form implicit
knowledge representations that describe controllable inter-
actions between the robot and the open system. The control-
based representation is intended to make it easy to substitute
resources employed by schema and thus to foster schema
re-use in related situations and with different (but similar)
robots. The long-term memory grows over time to provide
a library of hierarchical programs that becomes increasingly
complex over time (hence the term “developmental”).

A full description of the layered architecture is the sub-
ject of ongoing research and is beyond the scope of this
document. Here, we focus on the applications programming
interface and the CBAPI. Following a brief review of some
existing robot software architectures, we introduce the theory
that underlies the CBAPI, developed over the past decade
in the Laboratory for Perceptual Robotics, UMass Amherst.
Next, we discuss an implementation of the CBAPI that uses
the Microsoft Robotics Developers Studio (MRDS) as the
middleware solution. A GUI is presented for the CBAPI
and examples are presented that demonstrate how the GUI is
used to assemble and run control programs on both real and
simulated robot platforms. We then demonstrate how learn-
ing algorithms can assemble control circuits stochastically
according to constraints imposed in the programmer interface
to search for useful schemas. The schema form implicit
knowledge structures that can be stored and retrieved to serve
as temporally extended actions in hierarchical programs.

II. RELATED WORK

Contemporary autonomous control applications for robots
(and teams of robots) are often formulated conceptually as
distributed computational systems implemented in a manner
that requires the cooperation and coordination of numerous
sensors, effectors and control functions. Principles of mod-
ular design can be used to simplify the implementation of
such systems provided that suitable methods exist for com-
munication and interoperability. Well designed middleware
can address these challenges.

Several software tools exist for developing distributed
software solutions. [12] presents a survey of some of the
state-of-the-art middlewares available for robotic systems and
presents some of the challenges that they need to address.

Player/Stage is one such system that has been used
successfully for many mobile robot applications [3].
Player/Stage is a three-tier architecture in which the client
applications are the top layer, “Player” is the middleware
that provides common interfaces to various devices, and the
bottom layer consist of drivers for sensors and actuators. It
provides both 2D and 3D simulation environments, easily
switches between real and simulated hardware, and supports
many commercially available sensor packages. PlayerStage
was designed for mobile robot applications and has limited
support for manipulators.

Yet Another Robot Platform (YARP) was developed by
researchers at the LIRA-Lab in Italy and MIT. It was

designed as a middleware concept to support a distributed
controller for humanoid robots [10]. Yarp has the advan-
tage of allowing cross-platform operating system support,
but does not provide toolkits for kinematics, dynamics, or
simulation.

The Microsoft Robotics Developers Studio (MRDS) pro-
vides a Windows-based environment for implementing ser-
vices for robotics applications and simulation [11]. The
MRDS framework implements a .Net based Decentralized
Software Services (DSS) application model that provides a
lightweight environment for creating modular services. This
uses the Representational State Transfer (REST) style of
software architecture ([2]) where modular units having state
and functionality are abstracted into resources with a unique
global identifier that makes them accessible over the web.
MRDS also uses a Concurrency and Coordination Runtime
(CCR) library that greatly simplifies handling asynchronous
input from multiple, distributed robotics sensors and sending
output signals to actuators.

In general, middleware is agnostic with respect to structure
for adaptive control, behavioral programming and organi-
zation, long-term knowledge acquisition and representation.
These frameworks are viewed as layers of control on top
of the middleware. The proposed architecture (Figure 1)
specifically tries to address these issues by overlaying the
CBAPI on top of the middleware. Its job is to implement
well-formed control expressions in the underlying service
level. In the next section, we will explain the theoretical
underpinnings of our API, the control basis framework.

III. THE CONTROL BASIS FRAMEWORK

First, we assume that device drivers exist for sensor system
that compute appropriate features in sensor signals that can
be published in the middlware. Furthermore, we assume
that motor drivers exist that implement asymptotically stable
position or force referenced motor controllers. Given this
functionality in the underlying device level and the ability
of the middleware to configure closed-loop control circuits,
the control basis framework provides a combinatoric means
of constructing legal closed-loop control expressions. Each
expression submits a sequence of time-varying reference
inputs to lower-level motor units. Further, as illustrated in
Figure 2, actions constructed in the control basis generalize
hierarchically to form temporally extended sequences of con-
trol expressions. The result is an architecture for constructing
hierarchical and multi-objective closed-loop programs from
strongly typed sensory and motor resources. The control
basis is defined by three sets: feedback signals, Ωσ , motor
parameters, Ωτ , and potential functions, Ωφ, that describe
the set of abstract goals with which to construct integrated
behavioral programs.

The control basis models the dynamics of integrated
behavior as a Discrete Event Dynamic System (DEDS) [14].
In this framework, the state of the system is estimated in
terms of the dynamic status of the active control expressions.
Properties of the integrated run-time system are required
to satisfy constraints on the global dynamics as indicated



Fig. 2. The control basis creates hierarchical control expressions. Greedy
control inputs are selected to descend navigation functions that are free of
local minima and that guarantee asymptotic convergence to fixed points. In
the hierarchical generalization of the approach, policies select temporally
extended sequences of control basis actions by greedy descent of value
functions.

by axioms written in terms of these status indicators [8].
State information is thus based on temporal streams of
feedback and is predictive. Among the important global
properties we exploit are constraints on the range of state
and action options that can be explored during learning—we
require that exploratory actions are restricted to those that
preserve safety conditions in the global behavior. Within this
state abstraction framework, the developmental assembler
constructs combinations of control expressions by searching
for sequences of optimal control decisions. Stochastic rein-
forcement learning algorithms estimate value functions, ΩΦ,
that provide a natural, hierarchical mechanism for learning
controllers with greater temporal scope.

A. Control Actions

Primitive actions in the control basis framework are
closed-loop feedback controllers constructed by combining
a potential function φ ∈ Ωφ, with a feedback signal σ ∈ Ωσ ,
and motor variables τ ∈ Ωτ . φ(σ) is a scalar potential
function (e.g., a navigation function [9]) defined to satisfy
properties that guarantee asymptotic stability and to preclude
local minima. Examples of potential functions that we have
defined with these properties include fields for kinematic
conditioning [5], collision-free motion [1], and force closure
for grasping and manipulation [15].

The sensitivity of the potential to changes in the value
of motor variables is captured in the task Jacobian, J =
∂φ(σ)/∂τ . Reference inputs to lower-level motor units are
computed by controllers c(φ, σ, τ), such that

∆τ = J#φ(σ),

where J# is the Moore-Penrose pseudoinverse of J [13].
The sensory and effector resources, Ωσ and Ωτ , adhere to

strict typing constraints such that only certain sensors and
certain effectors may be combined with a certain objective
functions. The types supported by the sensor and effector sets
may, for example, include Cartesian positions and forces in
R3, configuration variables of an n-DOF manipulator in Rn,
or headings perceived from camera in SO(2), etc. Previous

work by the authors provides a more detailed explanation of
how typing in the control basis can lead to efficient transfer
and generalization of control programs to new contexts [6].

The combinations of potentials Ωφ, and resources Ωσ and
Ωτ define all primitive closed-loop actions a ∈ A that the
robot can employ.

B. Multi-objective control

Multi-objective control actions are constructed by combin-
ing control primitives in a prioritized manner. Concurrency is
achieved by projecting subordinate/inferior actions into the
nullspace of superior actions, where

∆τ = J#
supφsup +

[
I − J#

supJsup
]
J#
infφinf . (1)

This prioritized mapping assures that inferior control inputs
do not destructively interfere with superior objectives and can
be extended to n-fold concurrency relations. In the following,
we will use a shorthand for the nullspace projection that
uses the “subject-to” operator “/.” The control expression
cinf / csup—read, “cinf subject-to csup”—is shorthand for
Equation 1.

C. State Estimation

The dynamics (φ, φ̇) created when a controller interacts
with the task domain supports a natural discrete abstraction
of the underlying continuous state space [8]. In this work we
use a simple discrete state definition based on quiescence
events. Quiescence events occur when a controller reaches
an attractor state in its potential and are useful in that they
represent “lack of progress” along the gradient of the poten-
tial. Formally, we can define a predicate pi(φ, φ̇) associated
with controller ci = c(φ, σ, τ), such that pi ∈ {X,−, 0, 1},
where “X” means “don’t know,” which indicates that the
controller is not running, “−” means that the target stimuli
is not present in the feedback signal, “0” means that the
controller is active and unconverged, and “1” represents
quiescence. Given a collection of n independent primitive
control actions, a discrete state space S ≡ (p1, · · · , pn)
is formed that illuminates the state observable under this
configuration of control laws.

D. Hierarchical Programming

Sensorimotor programs are learned in the control basis
framework given the state and action spaces S and A
defined by the set {Ωφ,Ωσ,Ωτ} and a reward function R.
Formulating the learning problem as a Markov Decision
Process (MDP), a learning agent can estimate the value,
Φ(s, a), of taking an action a in a state s in terms of its
expected future reward using reinforcement learning (RL)
techniques through trial-and-error experience [16]. This ap-
proach has been employed to learn control basis programs
for quadrupedal locomotion [8] and bimanual grasping [15].
Other work has explored using an intrinsic reward function
to learn a series of manipulation behaviors for a bimanual
robot [7].

Representing behavior in terms of a value function pro-
vides a natural hierarchical representation for control basis



Fig. 3. The CBAPI graphical user interface that allows for point-and-click
assembly of prioritized feedback control laws.

programs where maxima in the value function such that
|Φ̇| < ε, capture convergence events in the policy, just as
|φ̇| < ε captures convergence events in primitive controllers
(where ε is a small positive constant). These maxima occur at
states where the probability of transitioning to another state
with higher value is sufficiently low for all possible actions,
given a policy π. Although a program may have complex
internal transition dynamics, higher-level programs only see
a single bit summary of these dynamics.

IV. THE CONTROL BASIS API

In this section, we introduce a control basis instantiation
of the API between the service and application levels of our
layered architecture. This implementation is built on top of
the MRDS middleware to build the architecture shown in
Figure 1. We will demonstrate how the CBAPI facilitates the
quick assembly of multi-objective control programs using a
simple programming environment. In addition to providing
an intuitive point-and-click interface to the CBAPI, this
environment also provides a standard toolkit of basic robot
functions for robot manipulators and sensory resources that
is often re-written for every robot and every application.
This toolkit includes kinematic transformations, Jacobians
for motor control, harmonic function path-planners, methods
for the triangulation of sensory signals, and methods for
automatic nullspace composition and prioritized control laws.

A. The CBAPI Graphical Programming Environment

Figure 3 shows a screenshot of the CBAPI programming
environment that assembles multi-objective control laws. The
four text-boxes in the upper-half of the graphical interface
list the resources from which control basis programs can
be assembled and executed. All of the available resources
are populated dynamically by MRDS services. The CBAPI
performs online type-checking to establish legal control
configurations when constructing these menus.

The top left box provides all of the objective functions,
φ ∈ Ωφ, available to the CBAPI. The CBAPI currently
supports objective functions for kinematic conditioning [5]
and collision-free motion [1]. In addition, a simple Hooke’s
law potential, φh(σ) = 1

2σ
Tσ, is used to track visual,

configuration space, Cartesian, and force references.
The two middle boxes in the center column of Figure 3

describe all of the sensory signals, σ ∈ Ωσ , available on the
network (updated dynamically). There are two boxes, the
top for sensors that can provide sensory feedback signals,
the bottom for sensors that provide “reference” signals.
Both boxes contain the same list of resources. When an
objective function is selected, only sensory signals that match
the characteristic input type of that objective appear in the
sensor boxes. Also, some potential functions do not require
reference signals, only sensory signals that assess the current
state of the system (e.g., kinematic conditioning objectives).
In these cases sensors will only appear in the top box.

The third box contains all controllable motor units, τ ∈
Ωτ , available for composition. The effector resources that
appear in this box have an effector type that: 1) matches
the output type of the potential function, or 2) maps through
an appropriate Jacobian to the output type of the potential
function.

When legal control combinations are selected, they can be
added to a control law in order of decreasing priority (via
nullspace projection), by clicking on the “Add” button in
the GUI. The bottom white text window shows that a single
control objective has been added to the current control law.
From the GUI, this control law can be run, stopped, and
cleared while the controller’s state and potential dynamics
(φ and φ̇) are displayed in the black text box in the bottom
right hand corner. A dynamic plot of the potential can also
be viewed in real-time by selecting the “Potential” tab (not
shown). Another tab allows users to configure a series of
control actions that will be run in sequence, transitioning as
controllers quiesce or lose their target input reference.

B. Example: Visual Tracking

The CBAPI is used experimentally on two different robotic
platforms at the Laboratory for Perceptual Robotics: the
bimanual robot Dexter and the mobile manipulator uBot-5,
both seen in Figure 4.

Fig. 4. The Laboratory for Perceptual Robotics robots (a) Dexter and (b)
uBot5.



Fig. 5. The CBAPI interface for setting up an stage for autonomous robot
learning.

Dexter (Figure 4(a)) often uses a simple tracking controller
to point its cameras at visual stimuli. Controller ctrack is a
closed-loop controller that pursues a visual cue (a highly
saturated hue, for example) by changing the reference head
posture, θhead. Dexter has a pan/tilt head with left and right
cameras fixed along parallel gazes. The goal is to keep the
coordinate of the saturation cue γlsat at the origin (image
center) γl0 on the left image plane. We define the control
basis primitive ctrack with feedback error εγ = (γlsat−γl0),
Hooke’s law potential function, φh, and the robot’s pan/tilt
head effector variables:

ctrack , c(φh, εγ ,θhead).

This control action can be constructed in the CBAPI
GUI by selecting the Hooke’s Law squared-error potential
function for headings in SO(2), a sensor resource pertaining
to the headings toward highly saturated pixel regions, a
heading reference representing the center of one of the
robot’s two cameras, and the motor variables pertaining to
the robot’s the pan/tilt head. If saturated pixels are available
in the robot’s field of view, this action will move the pan/tilt
head to center the camera on those saturated pixels.

V. THE KNOWLEDGE LEVEL

In addition to providing an intuitive way to quickly create
closed-loop control actions and control sequences, we believe
the greatest strength of the CBAPI is its ability to facilitate
the creation of hierarchical control programs that can be
submitted to machine learning algorithms. The resulting
programs, which we will call schema, can be stored in
memory in a way that can easily be recalled later and
modified according to new experience. Support for longi-
tudinal development at the knowledge level of the layered
architecture is a novel contribution of this work.

A. The Schema GUI

Figure 5 shows a graphical interface for setting up learning
tasks for robots. The upper panel shows any previously
learned schema that are available along with their transition
probabilities.

To create a new schema, the user first selects objective
functions, sensory and motor resources, and other schema
from the set of available options in the resource tab (Fig-
ure 3), populating the lower panel’s text fields, and then
clicks the “Build Schema” button. The learning program
assembles the state and action spaces that engage these
resources (as per Section III). The user can choose to limit
the depth of concurrent actions in the action set by entering a
number in the “Limit” field (e.g., entering “1” will only allow
single actions at a time, entering “2” will allow actions with
one lower priority objective, etc.). Rewarding goal states can
also be specified from the GUI. Various other parameters for
the reinforcement learning algorithm appear on the panel as
well and can be changed as the user desires. When options
are specified, the user can specify a number of learning
episodes and save the resulting policy in memory. This policy
can be re-loaded in future (by clicking the “Load” button),
or used hierarchically in other schema.

B. Example: REACHGRAB

In this example, a REACHGRAB program is constructed
to move Dexter’s right hand to an object and to apply a
small reference force with its fingers to a target object. This
program employs three actions, one of which is the program
SEARCHTRACK that it employs hierarchically:

• SEARCHTRACK runs the policy to find and track
regions of highly saturated hues in vision signals.
SEARCH saccades the pan/tilt head to locations where
saturation cues have been found in the past until
the stimulus is found. At this point, the schema em-
ploys the TRACK controller described earlier. This
SEARCHTRACK schema can be loaded from the robot’s
knowledge-base using the GUI.

• REACH reduces a feedback error between the Cartesian
location of the Dexter’s right hand, xrhand, and the lo-
cation of a highly saturated hue in Dexter’s workspace,
xhue. This error is defined as εx = (xrhand − xhue).
Controller creach uses this feedback error to construct
a quadratic potential function (Hooke’s law), and the
configuration variables of the robot’s right arm as the
effector resource,

creach , c(φh, εx,θrarm).

The specification of this controller in the CBAPI GUI
is straightforward.

• GRAB is a closed-loop controller that tracks a small
reference force on the finger tips of Dexter’s right hand
by changing the joint angles of the fingers in that hand
θrfingers. We define control basis primitive cgrab with
feedback error εf = (frfingers − fr,reffingers), Hooke’s law



Fig. 6. An optimal policy learned for REACHGRAB. Srg ≡
(pst, preach, ptouch). pst is the predicate value of the SEARCHTRACK
program, represented in the policy as ast.

potential function, φh, and the robot’s right-hand finger
angles:

cgrab , c(φh, εf ,θrfingers).

The reference for cgrab is defined when Dexter’s
fingers come into contact with an object. If too great
a force magnitude is perceived by a finger the finger
moves outward, and vice versa.

In this learning experiment we allow composite actions
up to depth 2, and reward all states in which the cgrab
reaches its quiescence state. It takes about 25 learning
episodes to learn the optimal policy for this program seen
in Figure 6. Dexter starts in state s =(XXX), and tries
to reach out and grab the object. If no saturated stimuli
are present, the robot transitions to state (X–) and invokes
the SEARCHTRACK schema until it finds and tracks such a
stimuli and enters state (1XX). Dexter then reaches out to
that stimuli, sometimes coming into contact with it (if it is an
object within reach) and entering state (X00), and sometimes
not (X1-). If contact is made, the robot continues executing
the reach/grab composite action until the goal state of (X11)
is reached.

C. Schema Transfer

The Schema GUI also allows a user to select a previously
learned schema (such as REACHGRAB), and replace the
sensory and motor resources with other resources that satisfy
the typing constraints. In this way, the user can re-use a
policy in a different context or even on a different robot.
For example, the SEARCHTRACK policy can search for and
track different visual stimuli (e.g., red pixels, movement,
etc.). Similarly, the REACHGRAB schema can use a different
arm or even an entirely different robot, such as the uBot5.
In this latter case, the uBot5 can drive around searching for
objects of a certain type and use both arms to pick those
objects up. As a robot learns new skills, users can consider
sharing those skills with other robots and applications in a
straightforward and intuitive way.

VI. DISCUSSION

In this paper, we present a robot programming architec-
ture for learning in open environments. It is designed to

facilitate the integration of machine learning algorithms and
autonomous robots. This model is designed to provide a
standard way for researchers to develop behavioral programs
that can be shared between robots and applications. We
provide an introduction to our implementation of this model,
focusing in particular on an implementation of the Control
Basis API. We demonstrate how single- and multi-objective
control programs can be written using this API and how
hierarchical behavioral programs can be learned, adapted,
and stored for later re-use.
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