
2009 IEEE 8TH INTERNATIONAL CONFERENCE ON DEVELOPMENT AND LEARNING 1

An Intrinsic Reward for Affordance Exploration
Stephen Hart

Abstract—In this paper, we present preliminary results demon-
strating how a robot can learn environmental affordances in terms
of the features that predict successful control and interaction.
We extend previous work in which we proposed a learning
framework that allows a robot to develop a series of hierar-
chical, closed-loop manipulation behaviors. Here, we examine
a complementary process where the robot builds probabilistic
models about the conditions under which these behaviors are
likely to succeed. To accomplish this, we present an intrinsic
reward function that directs the robot’s exploratory behavior
towards gaining confidence in these models. We demonstrate how
this single intrinsic motivator can lead to artifacts of behavior
such as “novelty,” “habituation,” and “surprise.” We present
results using the bimanual robot Dexter, and explore these results
further in simulation.

Index Terms—Affordances, Intrinsic Motivation, Developmen-
tal Robotics, Control-Based Representations.

I. INTRODUCTION

Gibson proposed a “theory of affordances” in which organ-
isms perceive their environment in terms of their ability to
interact with it [6]. Recent work in the robotics literature has
examined how to learn affordance models for robot grasping
and pushing [5], [13], [16], [18], mobile robot navigation [15],
and tool use [19]. Although this work appropriately grounds
a robot’s perception in its actions, these affordances were
learned under conditions strongly dictated by the programmer.
We believe, however, that a robot should be self-motivated to
learn its models of behavioral affordances. Recent attention in
the machine learning literature has investigated computational
means of self- or intrinsic-motivation that allow agents to gain
competence and acquire skills without programming in task-
specific rewards and goals [1], [14].

Intrinsic motivators for behavior have long been studied
in psychology. Hull introduced the concept of “drives” such
as hunger, pain, sex, or escape in human behavior, in terms
of deficits that the organism wishes to reduce to achieve
homeostatic equilibrium [11]. Berlyne proposed a number
of other intrinsically motivating factors—what he called the
collative variables—such as novelty, habituation, curiosity,
surprise, challenge, and incongruity [2]. Festinger suggested
that there is a drive to reduce the cognitive dissonance between
internal knowledge structures and the current perception of
the organism’s world [4]. Primary motivators to reduce the
discrepancy between cognitive structures and experience were
introduced by Kagan [12].

In this paper, we provide an intrinsic motivation function
that attempts to bring together much of the above psychology

S. Hart is with the Laboratory for Perceptual Robotics, Univer-
sity of Massachusetts Amherst, Amherst, MA, 01003, USA e-mail:
(shart@cs.umass.edu)

work. This function rewards a robot for taking actions that
reduce the uncertainty in its models of which environmental
contexts lead to controllable interactions. We characterize this
uncertainty by examining how the variance of these models
dynamically changes with experience. We call these models
“affordance models,” and show how they can be acquired
in a reinforcement learning framework [20]. Although other
work has used variance reduction and measures of model im-
provement in intrinsically motivated learning systems (c.f., [3],
[17]), our work explicitly links the learning of affordance-
based memory structures and techniques for intrinsic motiva-
tion in real-robot systems.

Our technique for affordance modeling extends previous
work examining how a robot can autonomously develop hi-
erarchical control programs [7], [9], [8]. The intrinsic reward
function presented in this paper allows a robot to explore the
conditions in which such programs are likely to succeed until it
achieves sufficient confidence in its internal models. The result
is a process complementary to the mechanisms for acquiring
the behavior in the first place (as presented in [9], [8]) that
can guide a robot towards an enhanced understanding of how
it can interact with its environment.

The remainder of this paper is organized as follows. In the
next section, we introduce the control basis framework for
state and action that allows for hierarchical and co-articulated
behavior. We then explain the “multi-modal imperative” with
which we endow our robots to assemble behavioral programs
in this framework. Next, we introduce a formal definition for
affordance models. We explain how a robot can acquire and
refine such models using a novel intrinsic reward function in
learning situations we call model exploration programs. We
conclude with three illustrative demonstrations showing how
model exploration programs result in behavior that could be
interpreted as habituation, novelty, and surprise.

II. THE CONTROL BASIS FRAMEWORK

The control basis framework provides a combinatoric means
of constructing hierarchical and multi-objective closed-loop
programs from a robot’s sensory and motor resources, and is
diagrammed in Figure 1. Although this framework is discussed
in more detail in previous publications (c.f., [7], [9], [8]), we
briefly summarize its main components here in order to em-
phasize the representational analogy between the state/action
spaces of the robot’s control processes and the state/action
spaces of its cognitive processes as described in Section III.

The control basis framework supports principled mecha-
nisms for the following:

1) Parameterizable Control Actions:: Primitive actions in
the control basis framework are closed-loop feedback con-
trollers constructed by combining a potential function φ ∈ Ωφ,

978-1-4244-4118-1/09/$25.00 c©2009 IEEE

2009 IEEE 8TH INTERNATIONAL CONFERENCE ON DEVELOPMENT AND LEARNING 2

Fig. 1. This diagram shows the hierarchical, control basis architecture.
Control actions perform greedy descent on potential fields, φ, that are free
of local-minima. These actions send reference inputs to low-level motor units
(with H and G representing feedback and feedforward transfer functions,
respectively) that guarantee stable performance at the hardware level. Pro-
grams written using these control expressions ascend value functions, Φ, that
produce adaptive-optimal performance.

with a feedback signal σ ∈ Ωσ , and motor variables τ ∈ Ωτ ,
into a control action c(φ, σ, τ). In any such configuration,
φ(σ) is a scalar potential function defined to satisfy properties
that guarantee asymptotic stability. The sensitivity of the
potential to changes in the value of motor variables is captured
in the task Jacobian, J = ∂φ(σ)/∂τ . Reference inputs to
lower-level motor units are computed by controllers c(φ, σ, τ),
such that ∆τ = J#φ(σ), where J# is the Moore-Penrose
pseudoinverse of J .

Multi-objective control actions that support co-articulated
behavior are constructed by combining control primitives in
a prioritized manner. Concurrency is achieved by projecting
subordinate/inferior actions into the nullspace of superior
actions, and is denoted cinf / csup. The combinatorics of
potentials Ωφ, and resources Ωσ and Ωτ defines all closed-
loop, multi-objective actions a ∈ A that a robot can employ.

2) State Estimation:: The dynamics (φ, φ̇) created when a
controller interacts with the task domain supports a natural dis-
crete abstraction of the underlying continuous state space [10].
One simple discrete state definition based on quiescence events
and controller relevance was proposed in [9]. Quiescence
events occur when a controller reaches an attractor state in
its potential. We define a predicate p(φ, φ̇) associated with
controller c(φ, σ, τ), such that:

p(φ, φ̇) =


X : φ(σ) state is unknown
− : φ(σ) has undefined reference
0 : |φ̇| > εφ, transient response
1 : |φ̇| ≤ εφ, quiescence,

(1)

where εφ is a small, positive constant. The “−” condition
means that no target stimuli is present in the feedback signal,
σ, and the environment does not afford that control action
at that time. The unknown “X” condition occurs when a
controller is not running and has no dynamics. The “0”
occurs during the transient response of ci as it descends the
gradient of its potential, and “1” represents quiescence. Given
a collection of n distinct primitive control actions, a discrete
state-space S ≡ (p1 · · · pn) can be formed.

3) Hierarchical Programming:: Sensorimotor programs are
learned in the control basis framework given the state and
action spaces S and A defined by the set {Ωφ,Ωσ,Ωτ} and
a reward function R. Formulating the learning problem as a
Markov Decision Process (MDP), allows a learning agent to
estimate the value, Φ(s, a), of taking an action a in a state s
using reinforcement learning (RL) techniques [20]. Represent-
ing behavior in terms of a value function provides a natural
hierarchical representation for control basis programs where
attractor states of the value function, Φ, capture quiescence
events in the policy. As a result, the state of a program can
be captured using the same state-predicate representation as
above, even though that program may have its own complex
transition dynamics.

4) A Multi-Modal Imperative:: In previous work, we in-
troduced a reward function, rmmi, called the “multi-modal
imperative” (or MMI) that allows a robot to learn hierarchical
control basis programs [9]. The MMI focuses a robot’s atten-
tion around aspects of its environment that exhibit a degree
of controllability and stable interaction, regardless of that
aspect’s “mode” (visual, auditory, tactile, etc.). Specifically,
the MMI provides a unit of reward to the robot whenever it
can configure and run to quiescence any control action that
responds to a feedback signal, σ ∈ Ωσ , directly measuring
information from the robot’s environment.

The MMI has successfully been used to teach the robot
Dexter (Figure 3(c)) a number of manipulation behaviors—
many of which employ other of these same behaviors
hierarchically—labelled with the intuitive names SEARCH-
TRACK, REACHTOUCH, VISUALINSPECT, HANDTRANS-
FER, and PICKANDPLACE. In each program—or behavioral
schema—a policy was learned that orients the robot to respond
to a single rewarding control event by means of the MMI. Fig-
ure 2 provides the learned policies for two of these behaviors,
SEARCHTRACK and REACHTOUCH, both of which are used
in the experiments in Section IV. It is important to note that
although these behaviors appear to be used as atomic actions
in these experiments, each is a complex closed-loop control
program with its own internal transition dynamics.

In the remainder of this paper, we examine how an intrin-
sically motivated system exploring this suite of behaviors can
build models of the conditions under which MMI reward is
achieved. The result is a framework for learning probabilistic
models of affordances that can be acquired and adapted over
the course of a robot’s lifetime.

III. AFFORDANCE-BASED MEMORY

In [8], we examined how a robot could generalize control
basis schema to environmental contexts different from those
in which they were initially learned. This was achieved by
finding decision boundaries in the input signals to its control
actions and determining how to employ different resources
(e.g., a robot’s left arm vs. its right arm) that probabilistically
predicted rewarding outcomes. Formally, the robot learned
distributions of the form Pr(rmmi|f, ai) capturing the likeli-
hood of achieving MMI-type reward, rmmi, for taking action
ai ∈ A after observing the environmental context f ∈ F .

2009 IEEE 8TH INTERNATIONAL CONFERENCE ON DEVELOPMENT AND LEARNING 3

(a) (b)

Fig. 2. In this figure we show two behavioral schema, both of which are described in more detail in [9]. (a) shows a learned policy for a SEARCHTRACK
program using the multi-objective control action csaccade / ctrack . This program moves Dexter’s pan/tilt head in search of a particular hue-, saturation-, or
intensity-space visual feature the robot can then track. The state space for this program is Sst = (psaccade ptrack). The robot begins in state (XX) and
takes the composite action. If the target stimuli to be tracked is seen in the robot’s cameras, the robot continues running the action until ctrack quiesces in
state (01), and the robot receives reward from the MMI. If the stimuli is not initially present the robot enters state (0−) from which it repeatedly saccades
by moving its pan/tilt cameras until the stimuli appears causing the robot to enter state (00). (b) shows a learned policy for a REACHTOUCH program
that allows Dexter to visually seek out objects that it can then reach out and touch. This program has state space Srt = (pst preach ptouch) and uses
SEARCHTRACK hierarchically (as demonstrated by the SEARCHTRACK icon in the transition graph), with corresponding state predicate pst. It also employs
two other primitive control actions creach and ctouch in a composite control law. The robot begins by trying to reach out and touch a visual feature of a
certain type. If no visual feature of that type is found (causing creach to be undefined), the robot invokes SEARCHTRACK until such a feature is found and
tracked. The robot, at this point, runs creach / ctouch until the rewarding touch action becomes defined and quiesces, or the reach quiesces but the robot is
not in contact with any object (it is out of reach). For some simple objects within reach of the robot, this policy will result in controlled touch response that
results in a primitive “grab.” Note that both behaviors can be parameterized by visual σ’s of a certain type. For example SEARCHTRACK(blue) will search
for and track blue features; REACHTOUCH(red) will reach out and grab small red objects in the robot’s workspace.

In general, the values of F could capture any information
that might predict MMI reward. We chose to look exclusively
at the values of the feedback signals, σ ∈ Ωσ , used in the
control action set of the schema in order to restrict a possible
infinite feature space to a tractable collection of variables.
Furthermore, we only examined the means, velocities, and
spatial volumes of each σ measured immediately before each
action was run.

Examining the feature set F allows a robot to use its
experience to build models of contexts that are likely to lead
to MMI reward if a given program is run. We believe such
models best capture the likely affordance of a particular action
at any given time. We therefore call such models “affordance
models” defined such that:

M(ai) ≡ Pr(f |rmmi, ai). (2)

It is our goal to create learning situations in which a robot
may build reliable affordance models that it can store in its
memory as implicit, behavioral knowledge. We next propose
how this might be done.

A. Model Exploration Programs
We define a class of MDPs called model exploration pro-

grams. These MDPs have action set A, and an |A|-predicate
state representation set that captures the robot’s “confidence”
of each of its affordance models. We define this confidence in
terms of model variance quiescence. The quiescence of each
model is defined by a 4-valued predicate logic as follows:

p(Σ̇(Mi)) =


X : Mi is unknown
− : Mi has undef features f
0 : |Σ̇(Mi)| > εm
1 : |Σ̇(Mi)| ≤ εm,

(3)

where εm is a small, positive constant, Σ(Mi) is the vari-
ance of model M(ai), and Σ̇(Mi) is its rate of change as
experience is gathered.

Before the robot has experience with an action ai, its
affordance model will be unknown, and p(Σ̇(Mi)) = “X”.
If the environment does not afford a behavior at a given
time the corresponding predicate value will be undefined, and
p(Σ̇(Mi)) = “−”. This occurs when no relevant input signals
to the action are present on the robot’s sensors, and its input
can not be evaluated. However, in the cases where the robot
can take a particular action, the predicate value for that action’s
model will be 0 or 1, depending on the dynamics of that model.
It is worth noting the similarity of this state representation to
the state representation in control basis programs; one captures
dynamic properties of a robot’s actions, the other captures
dynamic properties of its internal knowledge structures.

We now define an intrinsic reward function for model
exploration programs. In this function, reward is received
at time t for taking action ai if the robot received new
information that changes its “confidence” of the corresponding
affordance model, such that:

raff (t) = |Σ(M(ai, t))− Σ(M(ai, t−1))| − ρ, (4)

where Σ(M(ai, t)) is the variance of affordance modelM(ai)
at time t, and ρ is a small positive constant constituting a cost
for performing each action. In cases where the models are
multi-dimensional, the magnitude of the variance across all
dimensions can be used to compute this reward.

We assume that the variance of a given affordance model
grows more stable as more experience is gathered. Therefore,
we would expect a robot using reinforcement learning to ex-
plore model exploration programs will build stable affordance

2009 IEEE 8TH INTERNATIONAL CONFERENCE ON DEVELOPMENT AND LEARNING 4

models over time. Moreover, we expect the robot to initially
get large amounts of reward for engaging novel contexts,
“habituating” quickly to those contexts that are relatively
stable. We also expect the robot to spend more time exploring
more variable contexts and to react strongly to contexts that
change in “surprising” and unexpected ways.

We allow each exploration program to contain a NOOP
action in its action set that has no cost. We expect the robot to
select this action over its other behaviors as the cost for taking
them eventually outweighs the expected information gained.

It should be noted that although each model exploration
program is defined as an MDP, the goal is not to find a
fixed, optimal policy for that MDP. Because the reward is
non-stationary this is not feasible. Instead, we expect that
an agent acting greedily to maximize reward at every time
step will spend time taking actions that gather the most
information in terms of the underlying affordance models.
However, formulating model exploration programs as MDPs
that can be submitted to reinforcement learning algorithms
provides a convenient way for the robot to habituate on its
models in an adaptive-optimal manner.

IV. DEMONSTRATION

To provide a demonstration of how model exploration
programs may be used in practice, we now present three simple
examples. Because it is our goal in this paper to examine the
qualitative and quantitative performance of model exploration
programs, the state/action set for each progam is provided by
the programmer a priori. It should be noted, however, that the
author is currently investigating means for the robot to create
its own exploration problems autonomously, with less explicit
guidance from a human programmer.

In each of the following three demonstrations, the robot
uses a model exploration program to guide its behavior in
estimating multi-dimensional Gaussian affordances models for
each of the program’s actions. The models are initialized
with zero mean and unit variance. For each, a single trial
was initially performed on the robot Dexter, and twenty-four
additional trials (for a total of twenty-five) were performed
using a realistic Dexter simulator. The simulation experiments
used the probabilistic models learned in the real trial (the
likelihood of success and the estimated affordance model for
each action) to generate realistic samples. The empirical results
presented in the following are averaged over all twenty-five
trials.

A. Experimental Setup

For all three experiments, a model exploration program
is instantiated and explored using Q-learning with ε-greedy
exploration (ε = 0.05)1 [20], and the action penalty, ρ = 0.05.
At the beginning of each trial, the robot has no experience
and thus undefined affordance models. As the robot performs
actions it receives reward by reducing the change in variance of
these models as more samples are added. If the rate of change

1A small exploration constant was chosen to inject some stochasticity
into the action selection process. Exploration arises naturally from the non-
stationary aspects of the intrinsic reward function.

of the variance between successive executions of an action
drops below εm = 0.1, we treat the model as having quiesced,
as per Equation 3. Each model is updated after the execution
of the corresponding action if reward from the multi-modal
imperative is received. The models are not updated when
the action does not succeed, accumulating no MMI-reward,
only cost. Performance is analyzed over 25 trials (1 real, 24
simulated) of 100 actions each. The change in variance after
each action was normalized to the maximum value observed
during each trial across all affordance models in the program.
We describe each of the three experiments next.

1) Dexter’s Table: In the first example, Dexter’s “first”
object—the green table seen in Figure 3(c)—is placed in the
robot’s workspace. We let the robot explore two behaviors and
the “no-op” action, such that A1 = {SEARCHTRACK(green),
REACHTOUCH(green), NOOP}. From the two behaviors, we
can create a model exploration program that explores the
affordances for Dexter being able to visually track the table
(with SEARCHTRACK), and reach out and touch it (with
REACHTOUCH). The feature space for the SEARCHTRACK
model is a five dimensional vector, fs = [u(t) u̇(t) γu(t)],
containing the centroid u(t) in R2 of green pixel regions on
the robot’s left camera image at time t, its area γu(t), and
its velocity, u̇(t). The feature space for the REACHTOUCH
model is a seven dimensional vector, fr = [x(t) ẋ(t) γx(t)],
containing the Cartesian location x(t) in R3 of the table found
by triangulating the view of the green pixel regions in both of
the robot’s camera images, that region’s estimated 3D volume,
γx(t), and its velocity, ẋ(t).

2) Three Moving Objects: In the second example, three
different colored objects (a red, a yellow, and a blue ball)
are placed on the green table in front of the robot. The
robot is given an action set A2 = {REACHTOUCH(red),
REACHTOUCH(yellow), REACHTOUCH(blue), NOOP}, re-
sulting in a three-predicate state-space for the model explo-
ration program—one predicate for each corresponding affor-
dance models. The robot is allowed to explore this action set
to learn the affordance models for each. During the trial, the
objects are placed in random locations on the table. After each
action, the positions of the red, yellow, and blue balls on the
table are moved to locations that differ from their original
position with (approximate) variances of 0.01m, 0.05m, and
0.25m, respectively. We hypothesize that the robot will explore
the objects in proportion to each object’s variance. In other
words, it will engage the blue object more than the yellow or
red object, and the yellow object more than the red.

3) Novel & Surprising Objects: In the third example, a two-
predicate model exploration program is instantiated in which
Dexter explores the action set A3 = {REACHTOUCH(red),
REACHTOUCH(blue), NOOP} and their corresponding affor-
dance models. For the first 25 actions, a red ball is placed in
locations on the table with a small positional variance. After
the robot takes 25 actions, a blue ball is placed on the table
also with small positional variance. After 25 additional actions
are taken, the position of the red ball is moved to a different
location on the table 25 centimeters from its original location.
In this example, we hypothesize two results: 1) Dexter will
engage the novel, blue object after it has habituated on the

2009 IEEE 8TH INTERNATIONAL CONFERENCE ON DEVELOPMENT AND LEARNING 5

0 10 20 30 40 50 60 70 80 90 100
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Table Habituation (avg. 25 trials)

actions

re
w

ar
d

reward

(a)

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Table Model Delta Variance (avg. 25 trials)

actions

de
lta

 v
ar

ia
nc

e

SearchTrack Model
ReachTouch Model

(b) (c)

Fig. 3. (a) shows the reward (averaged over 25 trials) received after each action for the model exploration program that tracks and touches the green table.
Reward becomes negligible after 20-30 actions. (b) shows the change in model variance for the two affordance models used in the program.

0 10 20 30 40 50 60 70 80 90 100
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Three Ball Object Habituation (avg. 25 trials)

actions

re
w

ar
d

reward

(a)

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Three Ball Model Delta Variance (avg. 25 trials)

actions

de
lta

 v
ar

ia
nc

e

ReachTouch(red)
ReachTouch(yellow)
ReachTouch(blue)

(b)

red yellow blue
0

5

10

15

20

25

30
Three Ball Action Choices (avg. 25 trials)

ReachTouch Object
Nu

m
be

r T
im

es
 C

ho
se

n

(c)

Fig. 4. (a) shows the reward (averaged over 25 trials) received after each action for the model exploration program that reaches out and grabs the three
colored balls. Reward becomes negligible after 30-40 actions. (b) shows the change in model variance for the three affordance models used in the program.
(c) shows the number of times each action is taken before the corresponding affordance model quiesces.

affordance model for the red object because it will produce
more reward, and 2) Dexter will exhibit a form of “surprise”
by re-engaging the habituated red object when its location
varies from its estimated model.

B. Results

Figure 3 shows the performance of the model exploration
program for the table experiment. We see in Figure 3(a) the
reward received after each action is taken (averaged over the
25 trials). This figure shows that after 20-30 actions, the robot
receives negligible reward for taking either of its two actions.
Figure 3(b) shows the change in variance for each of the
affordance models in the program. We can clearly see in this
plot the switch that occurs after about five or six actions when
the change in variance of the REACHTOUCH affordance model
starts to outweigh the habituating SEARCHTRACK affordance
model.

Figure 4 shows the performance of the model exploration
program for the three moving objects experiment. In these
experiments, it takes the robot about 30-40 actions to habituate
on its three affordance models, as seen in Figure 4(a). As
expected, we see in Figure 4(b) that it takes each of the

three models an amount of time to quiesce that grows with
the variance of the locations that the balls are placed in.
Figure 4(c) shows the average number of actions taken to
explore each of the colored objects before model quiescence,
averaged over the 25 trials. It clearly shows that it takes
increasingly more actions to quiesce on the more variable
objects. On average about 7 actions are taken before the robot
habituates on the red object, about 20 for the yellow object,
and about 27 for the blue object.

The final experiment shows that model exploration
programs—in addition to exhibiting “habituation” type
behavior—also results in behavior that is typically described
as reacting to “novelty” and being “surprised.” Figure 5 shows
the reward and variance plots for this experiment. The robot
quickly habituates on the red object, switching to the “novel”
blue object when it appears after 25 actions, in turn habituating
on that object model after about 25 more actions. Also, when
the position of red object moves it “surprises” the robot,
temporarily creating more uncertainty in its affordance model
for REACHTOUCH(red), and causing the robot to re-engage
that object, and to receive reward until it habituates once again.

2009 IEEE 8TH INTERNATIONAL CONFERENCE ON DEVELOPMENT AND LEARNING 6

0 10 20 30 40 50 60 70 80 90 100
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Novelty\Surprise Reward (avg. 25 trials)

actions

re
w

ar
d

reward

(a)

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Novelty\Surprise Delta Variance (avg. 25 trials)

actions

de
lta

 v
ar

ia
nc

e

ReachTouch(red)
ReachTouch(blue)

(b) (c)

Fig. 5. (a) shows the reward (averaged over 25 trials) received after each action for the model exploration program for the third experiment in which the
second object only becomes available after 25 actions, and the first object changes location after 50 actions. Reward becomes negligible during the first 5-10
actions as the robot explores the first object, but increases when the novel object appears, and again when the robot is surprised by the change of position
of the first object. (b) shows the change in model variance for the two affordance models used in the program. We see the change in variance decrease for
the first (red) object initially, but increase when its position is moved after 50 actions. We also see the change in variance become apparent when the novel
(blue) object appears, decreasing as the robot explores that object. (c) shows Dexter after running REACHTOUCH on the red ball.

V. DISCUSSION

In this paper, we provided a framework for intrinsically
motivated affordance modeling. This framework is built upon
a grounded, control-based architecture that allows a robot
to organize its sensory and motor resources into behavioral
programs according to a “multi-modal imperative,” and then
explore the environmental conditions under which these behav-
iors succeed. We provided three demonstrations in which the
robot Dexter learns models of objects in its environment: first
about a table we place in the robot’s workspace, then about
objects that appear on that table, and finally about objects that
come and go in interesting ways.

Although the empirical demonstrations in this paper were
performed in simple contexts with simple objects, we expect
the methodology to apply in more sophisticated situations. In
particular, we limited the examples to allow the robot only
to learn affordance models for trackability and touchability in
terms of an object’s location and size, but we expect model ex-
ploration programs to perform comparably for more interesting
affordances such as graspability, liftability, or assembly, given
that the robot has a program for accomplishing such actions.
We are currently investigating how the robot can learn these
behaviors by means of the multi-modal imperative.

ACKNOWLEDGEMENTS

This work was supported by NSF award SGER IIS-
0847895. The author would like to thank Shiraj Sen for his
useful feedback in its development.

REFERENCES

[1] A. Barto, S. Singh, and N. Chentanez, “Intrinsically motivated learning
of hierarchical collections of skills,” in Proceedings of the International
Conference on Development and Learning (ICDL), LaJolla, CA, 2004.

[2] D. E. Berlyne, Conflict, Arousal, and Curiosity. McGraw-Hill, 1960.
[3] M. Duff, “Design for an optimal probe,” in Proceedings of the Twentieth

International Conference on Machine Learning (ICML), Washington,
DC, 2003.

[4] L. Festinger, A Theory of Cognitive Dissonance. Evanston, Row,
Peterson, 1957.

[5] P. Fitzpatrick, G. Metta, L. Natale, S. Rao, and G. Sandini, “Learning
about objects through action: Initial steps towards artificial cognition,”
in IEEE International Conference on Robotics and Automation, 2003.

[6] J. J. Gibson, “The theory of affordances,” in Perceiving, acting and
knowing: toward an ecological psychology. Hillsdale, NJ: Lawrence
Erlbaum Associates Publishers, 1977, pp. 67–82.

[7] S. Hart and R. Grupen, “Natural task decomposition with intrinsic
potential fields,” in Proceedings of the 2007 International Conference
on Intelligent Robots and Systems (IROS), San Diego, California, 2007.

[8] S. Hart, S. Sen, and R. Grupen, “Generalization and transfer in
robot control,” in 8th International Conference on Epigenetic Robotics
(Epirob08), 2008.

[9] ——, “Intrinsically motivated hierarchical manipulation,” in Proceed-
ings of the 2008 IEEE Conference on Robots and Automation (ICRA),
Pasadena, California, 2008.

[10] M. Huber and R. Grupen, “Learning to coordinate controllers - rein-
forcement learning on a control basis,” in Proceedings of the Fifteenth
International Joint Conference on Artificial Intelligence (IJCAI), 1997.

[11] C. Hull, Principles of Behavior: An Introduction to Behavior Theory.
New York, NY: Appleton-Century-Croft, 1943.

[12] J. Kagan, “Motives and development,” Journal of Personality and Social
Psychology, vol. 22, pp. 51–66, 1972.

[13] J. Modayil and B. Kupiers, “Autonomous development of a grounded
object ontology by a learning robot,” in Proceedings of the Twenty-
Second Conference on Artificial Intelligence (AAAI-07), 2007.

[14] P. Oudeyer and F. Kaplan, “How can we define intrinsic motivation?” in
8th International Conference on Epigenetic Robotics (Epirob08), 2008.

[15] E. Şahin, M. Çakmak, M. Doǧar, E. Uǧur, and G. Üçoluk, “To afford of
not to afford: A formalization of affordances toward affordance-based
robot control,” Adaptive Behavior, vol. 4, no. 15, pp. 447–472, 2007.

[16] A. Saxena, J. Driemeyer, and A. Ng, “Robotics grasping of novel objects
using vision,” International Journal of Robotics Research, vol. 27, no. 2,
pp. 157–173, 2007.

[17] J. Schmidhuber, “Adaptive curiosity and adaptive confidence,” Institut
fur Informatik, Technische Universitat Munchen, Tech. Rep. FKI-149-
91, 1991.

[18] M. Stark, P. Lies, M. Zillich, J. Wyatt, and B. Schiele, “Functional object
class detection based on learned affordance cues,” in Sixth International
Conference on Computer Vision Systems, Vision for Cognitive Systems,
Santorini, Greece, 2008.

[19] A. Stoytchev, “Toward learning the binding affordances of objects:
A behavior-grounded approach,” in Proceedings of the AAAI Spring
Symposium on Developmental Robotics, Stanford University, 2005.

[20] R. Sutton and A. Barto, Reinforcement Learning. Cambridge, Mas-
sachusetts: MIT Press, 1998.

