
THE DEVELOPMENT OF HIERARCHICAL
KNOWLEDGE IN ROBOT SYSTEMS

A Dissertation Presented

by

STEPHEN W. HART

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

September 2009

Computer Science

c© Copyright by Stephen W. Hart 2009

All Rights Reserved

THE DEVELOPMENT OF HIERARCHICAL
KNOWLEDGE IN ROBOT SYSTEMS

A Dissertation Presented

by

STEPHEN W. HART

Approved as to style and content by:

Roderic Grupen, Chair

Andrew Barto, Member

David Jensen, Member

Rachel Keen, Member

Andrew Barto, Department Chair
Computer Science

To R. Daneel Olivaw.

ACKNOWLEDGMENTS

This dissertation would not have been possible without the help and support of

many people. Most of all, I would like to extend my gratitude to Rod Grupen for

many years of inspiring work, our discussions, and his guidance. Without his sup-

port and vision, I cannot imagine that the journey would have been as enormously

enjoyable and rewarding as it turned out to be. I am very excited about what we

discovered during my time at UMass, but there is much more to be done. I look

forward to what comes next! In addition to providing professional inspiration, Rod

was a great person to work with and for—creating a warm and encouraging labora-

tory atmosphere, motivating us to stay in shape for his annual half-marathons, and

ensuring a sufficient amount of cake at the weekly lab meetings. Thanks for all your

support, Rod!

I am very grateful to my thesis committee—Andy Barto, David Jensen, and Rachel

Keen—for many encouraging and inspirational discussions. Their comments and

feedback significantly contributed to the form of this document. I would especially

like to thank Andy for organizing the Intrinsic Motivation seminar I attended a few

years ago. This seminar helped focus the direction of my research and led me to

pursue many of the topics explored in this dissertation.

I would like to thank the many friends and colleagues who helped make my grad-

uate years as enjoyable as they were. Thanks especially to Aron Culotta, Sarah Os-

entoski, Ashvin Shah, Maryanne Olson, Trek Palmer, Ricky Chang, Heather Perkins,

and Shiraj Sen for their friendship and kindness, and for their company during those

many, many nights at the Moan & Dove. I would also like to extend my gratitude to

v

the members of the Laboratory for Perceptual Robotics and the Autonomous Learn-

ing Laboratory for our discussions and collaborations—specifically, Emily Horrell,

Rob Platt, Shichao Ou, Dirk Ruiken, George Konidaris, and John Sweeney. Priscilla

Scott and Leeanne Leclerc deserve special acclimations for making sure all of those

nasty administrative details got taken care of and for being patient with all of us

flaky academics.

My sincere appreciation goes out to my friends at WMUA, especially the members

of the weekday morning Jazz Block—Glenn Siegel, Ron Freshley, Ken Irwin, and

Michael Ehlers—and to Hank Berry. My years as the Thursday morning DJ of “Soul

Station,” provided me with a welcome and necessary outlet that helped balance my

work and hobbies. The music I discovered during this period provided an additional

level of creative inspiration that has, no doubt, profoundly shaped my being at its

core. To all those who stood up for their convictions, ran against the grain, and

followed their own paths—John Coltrane, Albert Ayler, Bob Dylan, Cecil Taylor,

Peter Brötzmann, Robert Wyatt, and many others—the passion, creativity, and love

that you brought (and bring) to your work is an inspiration to us all.

Most of all I would like to thank my fianceé, Meg, for her love, her kindness,

and her patience—especially during these last few stressful months. As I anticipate

the journey we are just beginning, I am filled with excitement more than words

can express. I would also like to thank my parents, Bill and Jean, and my sister

and brother-in-law, Catherine and Adam, for their support and their love as I chose

to stay in school for one degree after another. Finally, special gratitude should be

extended to Maximus Felinus and Doris Day for their uncanny tolerance.

vi

ABSTRACT

THE DEVELOPMENT OF HIERARCHICAL
KNOWLEDGE IN ROBOT SYSTEMS

SEPTEMBER 2009

STEPHEN W. HART

B.S., UNIVERSITY OF MASSACHUSETTS AMHERST

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Roderic Grupen

This dissertation investigates two complementary ideas in the literature on ma-

chine learning and robotics—those of embodiment and intrinsic motivation—to ad-

dress a unified framework for skill learning and knowledge acquisition.“Embodied”

systems make use of structure derived directly from sensory and motor configurations

for learning behavior. Intrinsically motivated systems learn by searching for native,

hedonic value through interaction with the world. Psychological theories of intrinsic

motivation suggest that there exist internal drives favoring open-ended cognitive de-

velopment and exploration. I argue that intrinsically motivated, embodied systems

can learn generalizable skills, acquire control knowledge, and form an epistemological

understanding of the world in terms of behavioral affordances.

I propose that the development of behavior results from the assembly of an agent’s

sensory and motor resources into state and action spaces that can be explored au-

vii

tonomously. I introduce an intrinsic reward function that can lead to the open-ended

learning of hierarchical behavior. This behavior is factored into declarative “recipes”

for patterned activity and common sense procedural strategies for implementing them

in a variety of run-time contexts. These skills form a categorical basis for the robot

to interpret and model its world in terms of the behavior it affords. Experiments

conducted on a bimanual robot illustrate a progression of cumulative manipulation

behavior addressing manual and visual skills. Such accumulation of skill over the

long-term by a single robot is a novel contribution that has yet to be demonstrated

in the literature.

viii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . v

ABSTRACT . vii

LIST OF TABLES .xiii

LIST OF FIGURES . xiv

CHAPTER

1. INTRODUCTION . 1

1.1 Motivation . 1
1.2 Approach . 2
1.3 Contributions . 4
1.4 Document Overview . 5

2. BACKGROUND . 8

2.1 Dynamical Systems . 8

2.1.1 Feedback Control . 9
2.1.2 Artificial Potential Fields . 10
2.1.3 Potential Fields for Discrete State/Action Spaces 11

2.2 Dynamical Systems Theories of Development . 13

2.2.1 Epigenetic Development . 13
2.2.2 Dynamic Field Theory . 15
2.2.3 Composable Motion Primitives . 16

2.3 Developmental Robotics . 18

2.3.1 The Role of Embodiment . 19
2.3.2 Affordance Modeling . 21

ix

2.3.3 Intrinsic Motivation . 23

2.4 Discussion . 26

3. A COMBINATORIC BASIS FOR ROBOT CONTROL 27

3.1 Artificial Potential Functions . 28

3.1.1 Quadratic Potential Functions . 30
3.1.2 Harmonic Functions for Collision-Free Motion 31
3.1.3 Kinematic Conditioning Functions . 32

3.2 Sensory and Motor Signals . 36

3.2.1 Directly Measured Signals . 37
3.2.2 Kinematic Transformations . 39
3.2.3 Internal Models . 41
3.2.4 Typing . 41

3.3 Typed Control Expressions . 43

3.3.1 Primitive Control Actions . 43
3.3.2 Co-Articulation . 44
3.3.3 Examples . 46

3.3.3.1 Kinematically Conditioned Reaching 46
3.3.3.2 Conditioning for Sensor Acuity . 49

3.4 Discussion . 53

4. SKILL LEARNING . 58

4.1 A State Representation for Dynamic Processes . 59
4.2 Affordance Discovery . 62

4.2.1 SearchTrack . 65
4.2.2 TactileProbe . 73

4.3 Hierarchical Composition . 77

4.3.1 ReachTouch . 78
4.3.2 VisualInspect . 81
4.3.3 BimanualTouch . 83

4.4 Discussion . 85

x

5. SKILL GENERALIZATION . 88

5.1 Background . 89

5.1.1 Piagetian Schema . 90
5.1.2 Computational Approaches . 90

5.2 Controller Abstraction . 91

5.2.1 Abstracting SearchTrack . 92
5.2.2 Abstracting TactileProbe . 94

5.3 Control Basis Schema . 98

5.3.1 ReachTouch Procedural Artifacts . 101

5.3.1.1 Approaches for Learning Handedness 102
5.3.1.2 Comparison of Approaches . 106
5.3.1.3 Learning “Out of Reach” . 111

5.3.2 Hierarchical Generalizations . 112

5.4 Discussion . 114

6. WORLD MODELING . 115

6.1 Modeling Affordances . 116
6.2 Catalogs . 118

6.2.1 A Probabilistic Method for Exploring Catalogs 118
6.2.2 Demonstration: Learning Three Catalogs . 121

6.2.2.1 Experimental Setup . 122
6.2.2.2 Results . 124

6.3 Model Exploration Programs . 130

6.3.1 Demonstration: Exploring Affordance Models 131

6.3.1.1 Experimental Setup . 132
6.3.1.2 Results . 133

6.4 Discussion . 135

7. MULTI-BODY RELATIONSHIPS . 138

7.1 PickAndPlace . 139

xi

7.1.1 Declarative Structure . 139
7.1.2 Generalizing PickAndPlace . 143
7.1.3 PickAndPlace Affordances . 146

7.2 Affordances Describing Environmental Impedance 153

7.2.1 Experimental Setup for Impedance Observations 154
7.2.2 Detected Impedances . 156
7.2.3 Discussion . 160

7.3 Meta-Catalog Exploration . 161

7.3.1 Demonstration: Learning Visual Meta-Catalog
Affordances . 161

7.3.2 Experimentally Determined Stackability Affordances 163

7.4 Discussion . 165

8. CONCLUSIONS . 167

8.1 Contributions . 168
8.2 Future Directions . 170
8.3 Insights and Discussion . 173

BIBLIOGRAPHY . 176

xii

LIST OF TABLES

Table Page

3.1 Dexter’s Resource Types. 43

3.2 Pixels per Period and φl at Three Object Locations 53

7.1 2-Way Stack Results . 163

7.2 3-Way Stack Results . 163

xiii

LIST OF FIGURES

Figure Page

1.1 Document Overview. 5

2.1 A special purpose dynamical system for closed-loop feedback
control. 9

2.2 Waddington’s “Epigenetic Landscape” (Waddington, 1943). 14

2.3 Thelen’s “Ontogenetic Landscape” for infant locomotion (Muchisky
et al., 1996). 15

2.4 (a) the hindlimb of the frog was placed in a number of locations (the
dots) and a stimulus was applied to its spinal cord. Resulting
forces were measured to estimate the force fields governing the
limb’s movements. (b) shows two spinal activation fields, A and
B, observed in frogs when two areas are artificially stimulated.
The vector sum of the field (+) is highly correlated to the
observed behavior when the two areas are co-stimulated (&).
These figures are adapted from (Mussa-Ivaldi & Bizzi, 2000) 17

3.1 The hierarchical control basis architecture. Control actions descend
potential functions by submitting reference inputs to lower-levels
and ultimately, to embedded motor circuits. Motor circuits are
fixed position and force referenced controllers that produce stable
behavior. Programs written using these control actions ascend
value functions describing optimal sequential behavior. H and G
represent feedback and feedforward transfer functions,
respectively. 28

3.2 The bimanual robot “Dexter.” . 37

3.3 Frames (a) and (b) show the robot before and after reaching to a
highly-saturated object with its right arm. 48

xiv

3.4 Frame (a) shows the potential of the Cartesian movement controller
averaged over 25 uniformly distributed locations on the table in
front of Dexter. Frame (b) shows the potential for the postural
bias controller for the same 25 locations. When that controller is
run as a subordinate control action to the Cartesian movement
controller compared to the same metric when that controller is
not run. Frame (c) shows the same comparison for the
manipulability controller run as the secondary objective to the
movement action. 55

3.5 Panels (a), (b), and (c) show the three places where the barcode
pattern was classified. Panels (d), (e), and (f) show a screenshot
from the robot’s left camera for the same three locations. 56

3.6 Panel (a) shows the barcode patterns used for classification
experiments. Patterns (1-3) are randomly generated
low-frequency patterns. (4-6) are medium-frequency patterns,
representing the characters A, B, and C, respectively, in the
Code-39 barcode standard. The high-frequency patterns (7-9), are
the Code-39 encoded strings ROBOT, DEXTER and
AMHERST, respectively. Each pattern is 10 cm square. Panel
(b) shows the classification error for each view of the barcode
patterns in panel (a) for each different box location. Results for
each test set are averaged. 57

4.1 Five trajectories of the error dynamics of a controller as they reach
convergence (the blue circled region). Each trajectory can be
modelled from experience and matched against future controller
executions. For asymptotically stable controllers, φ is
non-negative and φ̇ is negative definite and so these trajectories
reside in the lower-right quadrant. This plot is adapted
from (Coelho, 2001). 60

4.2 This figure shows an iconic representation of the state transitions for
a dynamic process. 61

4.3 Frames (a) and (b) show the image from Dexter’s camera before and
after the execution of Track(Sat-10). The highly-saturated
region that it moves to center in its image plane is marked in a
green ellipse. 67

xv

4.4 Frame (a) shows an image from Dexter’s left camera when a
saturated object is presented in front of the robot. Frame (b)
shows an image from Dexter’s camera while viewing window to its
left. Frame (c) shows the non-parametric distributions after 25
training episodes summarizing the pan/tilt configurations where
Dexter expects to observe this range of saturation in the visual
feedback. 70

4.5 SearchTrack transition diagrams for the policies acquired on
Dexter in the first stage of learning. Transitions are shown if they
occurred with a probability greater than 20%. The diagrams are
characterized by states s ∈ Sst where s = (psearch ptrack). The
policy employs Track first, and Search is chosen only when no
stimuli is immediately present. The state diagram in (a) shows
the policy when only single actions are allowed in the action set.
The state diagram in (b) shows the policy when composite actions
are allowed. 71

4.6 Reward plots for the SearchTrack policies learned on Dexter in
stage 1. Plot (a) shows the learning curves for each experiment
averaged over 10 trials of 50 episodes each (with 20%
exploration). Plot (b) shows the reward for the learned policies
averaged over 50 trials of 10 additional episodes in which there is
no exploration and the stimuli is guaranteed to be found from the
first search. The error bars shows a clear statistical advantage of
the co-articulated policy (blue) over the sequential action policy
(red). 72

4.7 The transition diagram for the policy learned for TactileProbe
using the robot’s right hand, characterized by the state vector
s = (psearch ptouch). Transitions are shown if they occurred with a
probability greater than 20%. The policy employs Touch first,
and Search is chosen only when no stimuli is immediately
present. 76

4.8 Panel (a) shows an image of Dexter’s hand after a rewarding
TactileProbe episode. Panel (b) shows the Gaussian
distributions after 25 training episodes estimating
Pr(θr,hand

∣∣ ||fr,i|| > ε, i = 1, 2, 3) and summarizing the finger
configurations where Dexter expects to make contact. 76

4.9 Panel (a) shows Dexter reaching to a highly-saturated object and
panel (b) shows Dexter holding that object with the force
controllers in the hand. 79

xvi

4.10 This diagram shows the transition diagram for the policy learned for
ReachTouch after 25 episodes. The state vector is
s = (pst preach ptouch) where pst is the state value of the
SearchTrack program. The hierarchical use of SearchTrack
is indicated by the abstract transition icon introduced in
Figure 4.2. 80

4.11 This diagram shows the transition diagram for the policy learned for
VisualInspect after 50 episodes. The state vector
s = (prt ploc ptrack), where prt is the state value of the
ReachTouch program. 82

4.12 Frames (a) and (b) show Dexter’s left camera image before and after
the execution of the control law Localizability /Track.
Frame (c) shows Dexter after the execution of that law. 83

4.13 Frame (a) shows Dexter after the completion of BimanualTouch.
Frame (b) shows the transition diagram for the learned policy
after 25 episodes. Transitions are shown if they occurred with a
probability greater than 20%. The state vector is
s = (prt phold ptouch), where prt is the state of the ReachTouch
program and phold is the state of the ConditionedHold
composite controller. 87

5.1 Abstract actions consist of objective functions φ ∈ Ωφ coupled with a
characteristic input type (CIT) and a characteristic output type
(COT). 92

5.2 Panel (a) shows Dexter’s left camera view while tracking motion
during a typical programming trial, and (b) shows the
non-parametric distribution of pan/tilt configurations learned for
motion cues after 25 training episodes. The single peak
corresponds to the place where the experimenter presented motion
cues to the robot during the acquisition of SearchTrack. 93

5.3 Trackable Configurations for Channels of Saturation 95

5.4 Trackable Configurations for Channels of Hue . 95

5.5 Trackable Configurations for Channels of Intensity 96

5.6 (a) shows the top-down (xy-plane) view of the Cartesian locations
where tactile responses occur. The outline of the table is shown in
green. (b) shows the side view (xz-plane). The coordinate system
has its origin in Dexter’s chest. 97

xvii

5.7 Sensorimotor programs in the control basis can be factored into
procedural and declarative components and generalized to new
environmental contexts, by means of the policy ψ(ai, fj), where
ai ∈ A and fj ∈ F . 99

5.8 Panel (a) shows the average reward per state transtion over 100 trials
for the ReachTouch experiments performed in simulation.
Panel (b) shows the performance of generalized learning on the
robot in (dashed-blue) and in simulation (solid-red). 107

5.9 The transition diagram for the policy learned for ReachTouch.
s = (pst preach ptouch), where pst is the predicate value of the
SearchTrack program. 109

5.10 This decision tree shows the resulting procedural policy for choosing
which arm to allocate for reaching based on object volume,
position, and velocity. 111

5.11 This decision tree shows conditions under which ReachTouch is
likely to achieve reward. It captures when objects are out of the
robot’s work space in terms of their position. 112

5.12 A possible re-parameterization of the ReachTouch schema utilizing
the TactileProbe program to achieve reward in place of the
Touch primitive. This schema has states s ∈ S ′rt where
s = (pst preach ptp), and pst and ptp are the state values of the
SearchTrack and TactileProbe programs, respectively. 113

6.1 Dexter’s first three objects: (a) a large green table, (b) a small
basketball, and (c) a red ball with colored splotches on it. 121

6.2 These plots show the results of exploring the affordance catalog for
the green table placed in front of Dexter. Plot (a) shows the
reward received after each action for the real robot trial, while
chart (b) shows the number of times each action was taken during
this trial. Successful actions (in which affordance discovery reward
was achieved) are shown in dark blue, unsuccessful actions are
shown in light green. Plot (c) shows the average reward for the
simulated trials, more clearly showing the overall habituation.
Plot (d) shows the actual change in variance, averaged over the
simulated trials, for the SearchTrack and ReachTouch
affordance models. 125

xviii

6.3 These figures show the results of exploring the affordance catalog for
the basketball placed on the table in front of Dexter. Plot (a)
shows the reward received after each action for the real robot
trial, while plot (b) shows the number of times each action was
taken during this trial. Plot (c) shows the average reward for the
simulated trials, more clearly showing the overall habituation.
Plot (d) shows the actual change in variance, averaged over the
simulated trials, for the SearchTrack, ReachTouch, and
BimanualTouch affordance models. 126

6.4 These figures show the results of exploring the affordance catalog for
the red ball placed on the table in front of Dexter. Plot (a) shows
the reward received after each action for the real robot trial, while
plot (b) shows the number of times each action was taken during
this trial. Plot (c) shows the average reward for the simulated
trials, more clearly showing the overall habituation. Plot (d)
shows the actual change in variance averaged over the simulated
trials for the affordance models built by employing the
SearchTrack, ReachTouch, BimanualTouch and two
VisualInspect behavior. 127

6.5 Iconic representations of the three catalogs Dexter learned for the
table, the red ball, and the small basketball. Each affordance
associated with the catalog is shown stacked in orange. 129

6.6 Plot (a) shows the reward (averaged over all 25 trials—real and
simulated) received after each action for the model exploration
program that tracks and touches the green table. Reward becomes
negligible after 20-30 actions. Plot (b) shows the change in model
variance for the two affordance models used in the schema. 134

6.7 Frame (a) shows a screenshot of the simulation environment for the
three ball example. Plot (b) shows the reward (averaged over all
25 trials—real and simulated) received after each action for the
model exploration program that reaches out and grabs the three
colored balls. Plot (c) shows the change in model variance for the
three affordances used in the program. The chart in (d) shows the
number of times each action is taken before the corresponding
affordances quiesce. 136

xix

6.8 Plot (a) shows the reward (averaged over all 25 trials—real and
simulated) received after each action for the model exploration
program for the third experiment in which the second object only
becomes available after 25 actions, and the first object changes
location after 50 actions. Plot (b) shows the change in model
variance for the two affordance models used in the schema. 137

7.1 The sequence of actions Dexter learned to accomplish the
PickAndPlace task. The robot begins by (a) finding a
highly-saturated hue in the video stream, (b) reaching to it and
performing a multi-fingered ReachTouch, (c) transporting it to
the location of the green hue feature (the table), and (d),
detecting the resulting reference load when the object comes into
contact with the table. 142

7.2 The declarative PickAndPlace transitions under the policy learned
by Dexter after 30 training episodes. Transitions are shown if they
occurred with a probability greater than 20%. The robot begins
by invoking the integrated ReachTouch behavior, accomplishing
the “pick” part of the task, and then running the composite
action Transport / Place that brings the object into contact
with the goal, controlling the resulting reaction forces. 143

7.3 This plot shows the average reward per state transition during the
accommodation phase of PickAndPlace. The results are
averaged over 10 trials of 30 learning episodes each. An ε-greedy
exploration strategy was used in these experiments with
ε=0.2. 144

7.4 The average reward per state transition of the PickAndPlace
behavior over all 80 episodes (averaged over 10 trials). 145

7.5 The PickAndPlace procedural policy. 146

7.6 A procedural adaptation for the PickAndPlace schema. In (a) we
see that the (blue-colored) goal is placed far to the robot’s left,
while the object is on its right. (b) and (c) show the robot using
BimanualTouch for picking up the object and passing it
between its hands, so that it can be brought to this far-away goal
location as seen in (d). 147

xx

7.7 Exploring the PickAndPlace behavior in the table catalog. Frame
(a) shows the reward per action over a sequence of 150 actions for
a single trial on Dexter. The first 100 actions show the reward for
constructing the catalog before PickAndPlace is added. The
next 50 actions show the results after the new PickAndPlace
action is added to the action set. Frame (b) shows the number of
times each action was taken during the trial—blue parts bars
indicate the number of times the behavior received reward from
the affordance discovery motivator, green bars indicate that no
reward was received. PickAndPlace did not achieve reward for
the table. Frame (c) shows the average reward per action for the
25 simulated trials of the same experimental setup 150

7.8 The results of adding PickAndPlace to the catalog for the small
orange basketball. Frame (a) shows the reward per action over
the total 150 actions engaging the basketball on the real robot.
The PickAndPlace action was introduced after the first 100
actions. Frame (b) shows the number of times each action was
taken, and the proportion of the actions that received reward
from the affordance discovery motivator. PickAndPlace
resulted in reward about 90% of the time. Frame (c) shows the
average reward for the 25 simulated trials. 151

7.9 The results of adding PickAndPlace to the catalog describing the
red ball. Frame (a) shows the average reward per action over the
total 150 actions engaging the basketball on the real robot. The
PickAndPlace action was introduced after the first 100 actions.
Frame (b) shows the number of times each action was taken, and
the proportion of times that action resulted in reward from the
affordance discovery motivator. PickAndPlace resulted in
reward about 90% of the time. Frame (c) shows the average
reward for the 25 simulated trials. 152

7.10 An iconic view of two “meta-catalogs” created when catalogs are
brought into contact via PickAndPlace . 153

7.11 Objects explored for impedance sensing. 155

7.12 Frame (a) shows the cylindrical relationship formed between the
yellow and blue cylinders. Frame (b) shows the prismatic
relationship formed between the brown and black boxes. 156

7.13 The average likelihood of the force-tracking affordance along each
dimension for the six meta-catalogs. 158

xxi

7.14 The estimated impedances (averaged over five trials) for the six
meta-catalogs. The estimates are normalized according to the
maximum estimate per trial. 159

7.15 Frame (a) shows the feature descriptor for an oriented visual blob
invariant f . Frame (b) shows the descriptor for a feature
constellation cf consisting of two primitive feature descriptors fi
and fj. 162

7.16 The growth of a 3-way stack consisting of the football on top of the
purple box on top of the blue box. This stack occurred
successfully two out of the five times it was built. 164

7.17 The hierarchical affordance catalog created between the blue box, the
purple box, and the football. The figure shows the affordances of
each object, as well as the affordances of the constellation of
features created when they are stacked on top of each other
through the PickAndPlace schema. 166

xxii

CHAPTER 1

INTRODUCTION

1.1 Motivation

Computational approaches for accumulating long-term control knowledge have

eluded psychologists and roboticists since the beginning of artificial intelligence re-

search. I argue that in order for an organism to learn over a lifetime, it must figure

out how to take actions that affect the world in measurable ways, be motivated to

employ such actions in a goal-directed manner, and understand the consequences of

these actions when they are performed. To accomplish these objectives in a computa-

tional system, I suggest that (1) an agent must have knowledge representations that

effectively capture controllable interactions with its environment, (2) an agent must

have a means of organizing and adapting knowledge structures in flexible ways to de-

scribe complicated tasks in comprehensive ways, and (3) an agent must be endowed

with an intrinsic means of motivating behavior and knowledge acquisition that is not

particular to any one task, but leads to categorical and epistemological models of how

the agent can interact with its environment.

The ability to apply accumulated knowledge and flexible decision making processes

in unpredictable environments is what the Russian biomechanist Nikolai Bernstein

defined as physical and cognitive “dexterity” (Bernstein, 1996). Dexterous manipu-

lation, therefore, is a rich domain in which to study behavioral and epistemological

organization in manual systems. Manipulation skills in humans develop during the

sensorimotor play stage occurring in the first 18-24 months of infancy, ending when

infants begin to create multi-object structures such as stacks and followed by the first

1

“conceptual” stage of development (Piaget, 1952). For many decades, psychologists

have looked at this early stage of human (and animal) development and attempted

to characterize play behavior (c.f., (Power, 2005)). Although many studies carefully

tabulate the observed play behavior common to most primates, they provide few

hypotheses of what exploratory and organizational mechanisms underly this stage.

More focus is given to the conceptual period that is more naturally expressed using

computational reasoning and planning techniques.

The sensorimotor stage is worth considering in detail because it creates founda-

tional knowledge for subsequent development and because this is when most manual

skills are acquired in rudimentary forms. In these few months, infants gain increas-

ingly comprehensive knowledge about objects and interactions to expand their grow-

ing capabilities. They become bored with objects they have seen, seek out new ones,

and explore how these objects might relate to each other.

Computational models that exhibit similar behavior and learn over the long-term

have not been demonstrated. Such computational models would solve many open

questions in artificial intelligence, such as: (1) how an agent can learn efficiently from

real-world experience, (2) how knowledge and behavior should be organized, and (3)

what motivational mechanisms can allow an agent to learn and gain expertise. It

is worth the challenge. Understanding mechanisms for learning and accumulating

knowledge is critical, not only for understanding how our minds work, but also for

understanding how artificial agents can have working minds as well.

1.2 Approach

Much of the literature in robotics has been devoted to examining how mobile

agents can navigate in low-dimensional spaces while avoiding collisions with obstacles.

However, many interesting forms of behavior involve direct physical interaction with

the world. The range of behavior exhibited by the human hand is immense because it

2

facilitates the acquisition of implicit knowledge regarding the use of utensils, handles,

containers, keyboards, and multi-object interactions like stacking, insertion, and other

assembly relationships of various complexity between bodies.

I propose a novel approach to programming dexterous robotic systems by guid-

ing the development of critical control knowledge. I advance a framework for self-

motivated discovery and the organization of behavior derived explicitly in terms of

a robot’s sensory and motor resources. An action in this framework is a decision

to activate a set of multi-objective closed-loop control circuits. The state-space for

decision making arises from the dynamic status of these circuits. I introduce an in-

trinsic motivation function that provides reward to states and actions in a way that

is grounded explicitly in the robot’s ability to discover what behavior its environment

affords.

This dissertation takes a dynamical systems approach to the organization of be-

havior in contrast to the sampling-based or planning techniques common in the litera-

ture that place unrealistic assumptions on the availability of complete environmental

knowledge. Dynamical systems approaches provide a biological and psychological

theory of behavior and development (e.g., Mussa-Ivaldi and Bizzi (2000), Wadding-

ton (1943), Thelen and Smith (1994)) and employs analytical tools from physics,

engineering, and artificial intelligence (e.g., optimal control theory and reinforcement

learning techniques (Sutton & Barto, 1998)). This dissertation examines a character-

ization of certain dynamical systems—feedback control systems that follow potential

fields—to provide a natural substrate for adaptive-optimal behavior in robot systems.

Potential fields assign value to states that a learning agent can explore. Although

potential field approaches are common in robotics and machine learning, they are

usually used to address problems on a task-by-task basis. The result is that no

commonly accepted description of how to uniformly represent multiple tasks in the

same potential field framework has yet been proposed. However, there has been much

3

recent attention in the robotics and machine learning communities on how to represent

the intrinsic value for taking certain actions in certain situations (Singh et al., 2004a;

Lungarella et al., 2003; Oudeyer et al., 2007). This work has been inspired by earlier

work in the psychology literature on internal drives by Hull (1943), and intrinsic

motivation by Berlyne (1960), White (1959), and others. In this dissertation, I will

examine an intrinsic reward framework that can be applied to many different real-

world tasks.

1.3 Contributions

This thesis makes a number of contributions to the literature. It provides (1)

a representation for integrated control programs—or skills—in a manner that facil-

itates the representation of “knowledge” that can easily be retrieved, re-used, and

adapted, (2) a framework for intrinsic motivation with which a robot can learn be-

havior and discover when that behavior is afforded by the environment, and (3) a

means of categorizing the world in terms of behavioral affordances that can drive

long-term exploration. The research presented in this document extends the control

basis framework for assembling behavioral programs from a combinatoric set of sen-

sory and motor resources (Huber, 2000; Coelho, 2001; Platt, 2006). It builds upon

the existing theory by providing mechanisms for generalizing programs to new con-

texts, and by introducing a natural intrinsic reward function for learning control basis

programs that rewards a robot for uncovering behavioral affordances.

The theoretical contributions of this thesis are demonstrated on a sequence of

robot manipulation tasks: visual and tactile search and tracking, reaching out and

touching (sometimes grabbing) objects, visual inspection, object segmentation (in

terms of affordances), and simple multi-object tasks such as “pick-and-place” and

stacking.

4

Figure 1.1. Document Overview.

1.4 Document Overview

In this document, I propose a framework for robot development in which tech-

niques for skill learning, skill generalization, and world modeling arise from principles

of embodiment and intrinsic motivation. I propose a single intrinsic motivator that

biases a robot to assemble sensory and motor circuits that couple with the environ-

ment in measurable ways. This motivator allows a robot to learn behavioral skills

in simple learning situations, generalize these skills to new contexts, and then use

these skills to model the world in terms of collections of control affordances. The pro-

posed framework is illustrated in Figure 1.1. Although the dimensions are discussed

in different chapters to facilitate a comprehensive evaluation, it is important to keep

in mind that these processes can (and should be) run concurrently in an integrated

learning system.

The document is organized as follows. Chapter 2 provides background on dynam-

ical systems theories in the psychology and engineering literature that provide the

underpinnings of the approach taken in the rest of the document. A brief overview of

5

psychological and computational theories of intrinsic motivation, embodiment, and

developmental robotics is also included. Chapters 3-7 constitute the main technical

chapters of this dissertation.

• Chapter 3 provides an introduction to the control basis framework and how it

can be used to create action spaces from combinations of sensory and motor

systems. The control basis provides structure from embodiment that make the

application of stochastic machine learning algorithms tractable in complex robot

systems.

• Chapter 4 addresses how natural state and reward descriptors arise from the

dynamics of control basis actions. An intrinsic motivation function is introduced

that is used to learn control basis programs that uncover behavioral affordances.

The chapter presents a number of hierarchical programs that are learned using

this intrinsic motivator.

• Chapter 5 shows how to generalize control basis programs into dexterous strate-

gies (called schema) that can be applied in many situations. Generalization is

accomplished by factoring programs into declarative and procedural components.

The declarative structure captures the abstract intentions of a program. The

procedural structure captures how to parameterize these intentions based on

run-time context.

• Chapter 6 examines how a robot can use its skill set to model its world in terms

of the behavior it affords. Collections of environmental affordances are assem-

bled into memory structures called “catalogs.” This chapter demonstrates how

a robot can explore a number of catalogs for some simple objects it encounters.

• Chapter 7 shows how affordance catalogs can be extended to model multi-object

assemblies when the robot acquires the ability to perform a “pick-and-place”

6

task. This chapter ends with a demonstration of how a robot can build hierar-

chical “meta-catalogs” that form the basis for long-term behavioral exploration

and world modeling.

Finally, Chapter 8 provides a summary of the work presented and discusses areas

of future investigation.

7

CHAPTER 2

BACKGROUND

In this dissertation, we are interested in robot behavior and knowledge that evolves

and changes over the course of long-term development. The proposed framework uses

a unique dynamical systems approach based on control theoretic methods. Sensory

and motor resources are attached to control objectives (or “intentions”) at run-time

to respond dexterously to interactions with the world. In this chapter, related work

on dynamical and developmental systems is presented. We begin by examining dy-

namical systems in physics and engineering, and follow with a discussion of dynamical

systems theories for biological development and behavior. We conclude with an exam-

ination of three areas of developmental robotics: embodiment, intrinsic motivation,

and affordance modeling. Individual chapters in the remainder of this document will

provide more specific summaries of related work as they are relevant.

2.1 Dynamical Systems

In the nineteenth–centrury, Henri Poincaré examined dynamical systems in which

a set of system (or state) variables change over time in accordance with a set of

governing rules. Poincaré studied gravitational systems, but derived a general theory

for how potential fields define interaction forces between physical bodies without direct

mechanical interaction. At each point in the state space, the system responds to forces

equal to the negative gradient of the potential field until it arrives at one of many

possible stable attractor states where the gradient of the potential becomes zero if the

flow-field is unobstructed.

8

Figure 2.1. A special purpose dynamical system for closed-loop feedback control.

In addition to describing forces in natural systems, dynamical systems can be used

to describe the ontogenetic, epigenetic, and epistemological processes of development

in biological systems. Ontogenetic development addresses how an individual develops

as it grows and interacts with its environment. Epigenetic development examines

how an individual’s gene expression is effected by mechanisms other than changes

in the underlying DNA. Epistemological development addresses how an individual’s

cognitive knowledge structures grow and adapt over time with experience. These

theories provide insight into how developing organisms change over time. This disser-

tation provides a framework for grounding development in the existing mathematical

dynamical system formalism.

2.1.1 Feedback Control

Feedback control systems, like that illustrated in Figure 2.1, are dynamical sys-

tems whose performance depends on properties of the environment as well as inputs

specified by a control function. In closed-loop control systems, feedback from sensors

is compared to a reference value in order to compute an error that is regulated by

control inputs applied to the plant. Feedback control loops can be used to track time-

varying reference signals called forcing functions that shape the system’s movements.

Forcing functions can originate from computational processes like a trajectory genera-

9

tor, or from the dynamics of signals originating from external environmental stimuli.

The time history of the overall response of a feedback loop reflects the pattern of

disturbances that are applied to the controlled system.

Tools from control theory describe how to analytically design control functions

for linear and non-linear systems in order to guarantee certain performance criteria.

The Russian physicist Aleksandr Lyapunov studied one such criterion related to the

asymptotic behavior of dynamical systems near attractors. A dynamical system is

said to be asymptotically stable if, as t → ∞, the system tends toward an attractor

state and stays there when it gets there. Mathematically, we can define Lyapunov

stability as follows:

Definition 2.1: If a function V (q, t), with state q and time t, exists where

V (0, t) = 0, and

V (q, t) > 0, for q 6= 0 (positive definite), and

dV/dt < 0, (negative definite),

then that function is a Lyapunov function and the state space q is asymptotically

stable in the neighborhood of the origin.

2.1.2 Artificial Potential Fields

Potential fields define the forces acting on a system. For example, the gravitational

potential near the surface of the earth is φ = mgh, where g is the gravitational

constant, h is the height of a body, and m is the mass of the object. Gravity creates

a constant force field that acts upon an object equal to −∇φ = −mgẑ. Similarly,

Hooke described a linear force field that governs the behavior of springs such that

−∇φ = −kx, where k is a constant and x is the amount the spring is extended from

10

its equilibrium position. Hooke’s law defines the potential energy stored in the spring

as φ = 1
2
kx2.

The above formulae can be applied to artificial systems, such as a robot manip-

ulator, to shape how that manipulator moves to goal positions and how it responds

to environmental disturbances. Simple formulations of artificial potential fields can

often result in local minima where −∇φ = 0 and the gradient vanishes short of true

global minima (Latombe, 1991). However, it is possible to apply constraints to the

shape of potential functions in order to eliminate local minima. In particular, avoid-

ing critical points where the gradient of the field becomes zero. Critical points occur

in three situations: type (0) minima, type (1) saddle points, and type (2) maxima.

Artificial potential fields in robotics were first developed in the context of path plan-

ning tasks by Krogh (1984) and Khatib (1986) to move the hypothetical “particle”

(i.e., the robot) toward goal configurations. Examples of artificial potential functions

appropriate for robot control are discussed in the next chapter.

2.1.3 Potential Fields for Discrete State/Action Spaces

Potential functions in discrete state and action spaces are called value functions.

Value functions can be estimated using reinforcement learning (RL) techniques for a

class of systems called Markov Decision Processes (MDPs) (Sutton & Barto, 1998).

An MDP is a tuple:

M = < S,A,P ,R > (2.1)

consisting of states S, actions A, transition dynamics P , and a reward function R.

In a Markov system, optimal control decisions that maximize value—or reward—can

be made at any time knowing only the current state s ∈ S. The information in state

s is sufficient; it is not necessary to know how the system arrived at s. Although this

11

assumption is rarely true in practice, MDPs have been successfully applied to many

domains.

Reinforcement learning techniques estimate value functions that satisfy the Bell-

man optimality equation. This criterion states that the action that produces the

maximum value at every state can be estimated as the sum of possible (discounted)

values at successor states and the reward gathered along the way. This sum is weighted

by the likelihood of arriving at each of the next possible states. Mathematically, the

optimal value at each state can be defined as:

V ∗(s) = maxa
∑
s′

P a
ss′

[
Ra
ss′ + γV ∗(s′)

]
, (2.2)

where P a
ss′ is the probability of arriving in state s′ after taking action a in state

s. Ra
ss′ is the reward received when making that transition, and γ ∈ [0, 1) is a

discounting factor necessary to satisfy convergence criteria for infinite horizon tasks.

Value functions that satisfy Bellman’s equation (Bellman, 1961) are useful because

they allow an agent to maximize reward by following a greedy policy π at every

decision point that maps states to actions, such that:

π(s) = argmaxa
∑
s′

P a
ss′

[
Ra
ss′ + γV ∗(s′)

]
. (2.3)

It is also possible to estimate state/action value functions, Φ(s, a), using tech-

niques such as Q-learning (Watkins & Dayan, 1992)1. Q-learning estimates the value

function through trial-and-error experience using the update-rule:

Φ(s, a) ← Φ(s, a) + α
(
r + γ maxa′Φ(s′, a′)− Φ(s, a)

)
(2.4)

1The Φ(s, a) notation is used instead of the customary Q(s, a) to emphasize the relation of discrete
value functions to the continuous potential fields φ.

12

where γ ∈ [0, 1] is the discount rate, r is the reward received, and α > 0 is a step-size.

With sufficient experience, this estimate is guaranteed to converge to the optimal

value Φ∗. In this case, the optimal policy π∗ maps states to actions by maximizing

the expected sum of discounted future reward, such that

π∗(s) = argmaxaΦ
∗(s, a). (2.5)

To balance exploration and exploitation, many techniques for selecting actions from Φ

are available. One such approach suggests choosing actions according to an ε-greedy

policy in which the action with the highest value for the current state is chosen with

probability (1− ε), and a random (exploratory) action is chosen the remainder of the

time.

2.2 Dynamical Systems Theories of Development

Dynamical system models have also been suggested for development in biolog-

ical systems. These models provide useful insight into how a series of interacting

“forces” might result in epigenetic, ontogenetic, and epistemological development for

organisms operating over long time-scales.

2.2.1 Epigenetic Development

In the 1940’s, C.H. Waddington proposed an “epigenetic landscape” for the ge-

netic development of biological organisms in the face of external influence, such as

mutations. His landscape metaphor, depicted in Figure 2.2, draws clear parallels to

dynamical systems theory (Waddington, 1943). As development occurs, the organism

takes different paths (like the marble) through the landscape, as goverened by biolog-

ical “rules,” to develop new genetic products at the attractor states (the wells at the

bottom of the figure). According to Slack’s characterisation of the landscape, “all the

cells in the embryo would evolve according to the same [dynamical] laws, but because

13

Figure 2.2. Waddington’s “Epigenetic Landscape” (Waddington, 1943).

of the existence of inducing signals, cells in different regions would follow different

pathways...and end up at different attractors, which can be elegantly associated with

different states of terminal differentation” (Slack, 2002).

As an example, Waddington described how the bristle on the distant end of the

antenna of the Drosophila (a type of fruit fly) could change roles to become a leg

segment when subjected to a mutant version of an allele of the aristapedia gene.

Such hard turns in the course of development led Waddington to hypothesize that

the genetic makeup of the organism controls discrete stages with multiple bifurcations,

or pathways, realized through the formation of the various “folds” in the landscape

that make different end-states possible. Although, mainly meant as a metaphor

for epigenetic development, Waddington’s landscape supplies a fundamental—albeit

qualitative—view of development at the biological level.

14

Figure 2.3. Thelen’s “Ontogenetic Landscape” for infant locomotion (Muchisky
et al., 1996).

2.2.2 Dynamic Field Theory

The developmental psychologist Esther Thelen provided a dynamic systems theory

of congition and action (Thelen & Smith, 1994). She argued that development, both

at the ontogenetic and epistemological levels, can be viewed as the assembly of many

interacting subsystems. In a dynamical sense, Thelen proposed that paths to different

attractor regions—representing stable behavioral or cognitive states—are traversed in

the context of physiological or environmental influences. Furthermore, these paths, as

well as the “deepness” of the attractor regions are reinforced from experience, biasing

the organism in similar situations.

Thelen applied Waddington’s epigenetic landscape metaphor to ontogenesis, a

specific example of which is shown in Figure 2.3 for infant locomotion. She argued that

15

the dynamic influences of many interacting components, such as the onset/offset of

motor reflexes, physiological and maturational changes such as the strength-to-weight

ratio, environmental influences like gravity, or even reinforcement from repetition,

all influence the development of behavor such as locomotion. In the diagram, time

proceedes downward as various behaviors (represented as valleys in the landscape)

emerge in the precense of influences displayed on the left hand side.

One early example demonstrating Thelen’s theory examines the stepping reflex

of newborn infants that seemingly dissappears after the first 3 months—reappearing

later shortly before the infant begins walking—even as kicking increases. Thelen

found that chubbier babies tended to lose the stepping reflex earlier than more slender

babies, as well as that, under certain situations such as when the infant is held upright

with its lower torso submerged in water, the stepping reflex can be triggered even after

it had seemingly dissappeared. From this, Thelen hypothesized that behavior emerges

from the interaction of many interacting components. For stepping, the posture of the

infant, the fat-to-muscle ratio of the infant’s legs (which increases around 3 months of

age), and the pull from the environment all influence the resulting behavior (Spencer

et al., 2006).

Thelen attempted to formalize her theory mathematically (c.f., (Schöner & Thelen,

2006)), but maintained that “the specific form of the model is...less important than

the general principles...on which it is based” (Thelen & Bates, 2003). Nevertheless,

her theories provide a useful metaphor for how development can be approached from

a dynamical systems perspective.

2.2.3 Composable Motion Primitives

There also exists growing interest in the neuroscience literature positing poten-

tial field approaches to the dynamical movements of animals. Mussa-Ivaldi, Gizster,

and Bizzi proposed a new perspective on how the central nervous system (CNS) rep-

16

(a) (b)

Figure 2.4. (a) the hindlimb of the frog was placed in a number of locations (the
dots) and a stimulus was applied to its spinal cord. Resulting forces were measured
to estimate the force fields governing the limb’s movements. (b) shows two spinal
activation fields, A and B, observed in frogs when two areas are artificially stimulated.
The vector sum of the field (+) is highly correlated to the observed behavior when
the two areas are co-stimulated (&). These figures are adapted from (Mussa-Ivaldi &
Bizzi, 2000)

resents and solves some of the most fundamental computational problems of motor

control (Gizster et al., 1993; Mussa-Ivaldi & Bizzi, 2000). The authors provide a

hypothesis in which desired motions are assembled from a “grammar” of inherent

force fields that can push an organism’s limbs in various directions with respect to

a reference attractor point. They provided an analysis showing that motor primitive

modules reside in the spinal cord of frogs and rats. These modules are adapted to

meet the demands of both the environment and the changing mechanical properties of

the animal’s limbs as they grow, thus implicitly solving the inverse dynamics problem.

17

Spinal force fields were measured by placing the hindlimb of a frog in various planar

locations, as seen by the dots in Figure 2.4(a), while the spinal cord was stimulated.

The resulting Cartesian force response of the frog was measured using a transducer.

The authors demonstrate how observed motions are consistent with linear, weighted

sums of low-level modules (or potential fields) combined to achieve the task behavior.

Figure 2.4(b), from (Mussa-Ivaldi et al., 1994), shows how two observed spinal force

fields (A) and (B) when added together (+) correlate approximately 87% to the

observable patterns when the two activation areas are co-stimulated (&).

This series of experiments are compelling and suggest that motor behavior in

frogs is assembled from a discrete set of adapting primitives that reside in the ani-

mal’s nervous system. Such an approach avoids the necessity of building complete or

accurate internal dynamic models, but rather allows the organism to assemble com-

plex, co-articulated movements using only local information. Work by Mussa-Ivaldi,

Bizzi, and Gandolfo have demonstrated that such an approach could be applied to the

planning and execution of a visuomotor tasks (Mussa-Ivaldi & Bizzi, 2000; Gandolfo

et al., 1996), and thus provides biological evidence for the framework presented in

this document.

2.3 Developmental Robotics

Computational methods for developmental learning in robotic systems was pro-

posed by a number of researchers including Sandini et al. (1997), Grupen et al. (Pi-

ater & Grupen, 2000; Coelho et al., 2000; Huber, 2000), Berthouze et al. (1996),

and Asada et al. (2001), and have recently enjoyed a great deal of attention in the

literature. Researchers are discussing (1) how to leverage theories of development to

build better autonomous, adaptable, and capable robots (Asada et al., 2001; Metta,

2000) and (2) how to apply computational mechanisms to gain a deeper understand-

ing of the processes of development that arise in natural systems (Braitenberg, 1984;

18

Reeke et al., 1990; Pfeifer, 2002; Sporns, 2003). Developmental robotics includes

methods for a robot to learn about itself (e.g., learning about the visual appearance

of the robot’s own limbs (Natale, 2004)), as well as about what things the robot

can actively control (i.e., its hand and fingers) (Kemp & Edsinger, 2006; Edsinger &

Kemp, 2006). Other methodologies show the advantages of providing time-varying

developmental constraints to guide algorithms that learn by exploring (Gomez, 2004;

Lee & Meng, 2005). Constraints are relaxed as the robot gains more competency in

stages. Staged learning also provides a means for grounding knowledge in an agent

that learns increasingly complex skills (Asadi et al., 2006; Kaplan & Hafner, 2005;

Cohen et al., 2007). Edsinger and Kemp showed how a humanoid may develop a

sense about its appendages in a proximal-to-distal fashion—learning about its hands

in one stage, and its fingers in the next—by using information theoretic techniques for

discovering discriminating perceptual categories (Kemp & Edsinger, 2006; Edsinger

& Kemp, 2006).

The field of developmental robotics has expanded to examine the processes of

motor control, cognitive development, longitudinal learning, and the role of embodi-

ment in intelligence (Lungarella et al., 2003). In part, this dissertation is examining

the utility of this more integrated computational view. In particular, I examine how

theories of sensorimotor play behavior and intrinsically motivated systems can natu-

rally be represented using computational tools. Three specific areas of developmental

robotics relevant to the proposed framework are discussed next.

2.3.1 The Role of Embodiment

Developmental robotics focuses on the integration of machine learning, psycho-

logical theories of development, and computational models of behavior in situated

systems. This perspective adds to the debate on long-standing issues of artificial in-

telligence. One prominent issue concerns the role of embodiment in the acquisition of

19

behavioral and cognitive competence. For many years, knowledge in computational

systems was treated as a process independent of a body.

Knowledge representations in artificial systems have been studied since the earliest

days of artificial intelligence for rule-based systems (Newell & Simon, 1961; Minsky,

1974; Davis et al., 1993). In the 1980’s, a great deal of research focused on the formal

representation of common sense knowledge in symbolic AI systems (Hayes, 1978;

Hobbs & Moore, 1985; Davis, 1990). More recently, ambitions large-scale projects

such as CYC (Lenat, 1995) and OpenMind (Singh, 2001) have been undertaken to

collect such knowledge through textual analysis, but have yet to prove any deep,

common sense understanding of consequences or an ability to scale to real-world

competence in any behavioral task.

Even traditional robotics techniques relied on having a completely determinis-

tic world—such as a factory setting—in which non-reactive and symbolic planning

techniques could be applied with reasonable success. For example, natural language

descriptors are often used to describe objects and object relationships in what are

called “Blocks Worlds” (Winograd, 1971).

In contrast to such systems, I believe that complex behavior is really the result

of situated learning systems that use sensory and motor apparati to explore the un-

structured environment around them. How important is the character of embodiment

to the expected outcome of development? Margaret Wilson proposed six “views” in

order to argue that embodiment plays a central role in the cognitive processes of any

learning agent (Wilson, 2002). Wilson argued that (1) cognition is situated, inherently

involving the interaction between sensory and motor systems, (2) cognition is time-

pressured because it must inform decisions that react to a dynamic, changing world,

(3) cognitive work is “off-loaded” onto the environment because, due to the limitations

of our processing capabilities, we must exploit the world on a “need to know” basis,

(4) the mind and the world form a closed-loop system that make it difficult to study

20

cognition in isolation, (5) cognition is for action and must be understood in terms of

its ability to allow for interaction with a dynamic world, and (6) “off-line,” mental

cognition is body based and grounds the mechanisms for thought and understanding.

In conjunction, these views form a compelling argument that cognitive development

should be studied in embodied systems, such as a robots, that are designed to interact

with and manipulate the world.

In Vehicles, the psychologist Valentino Braitenberg examined how non-trivial be-

havior can emerge in simple embodied systems that interact with the world (Brait-

enberg, 1984). Later, Brooks showed how the emergent behavior of a reactive robot

system does not have to rely on complex world models internal to the robot (Brooks,

1986; Brooks, 1991), suggesting that “the world is its own best model” (Ballard, 1991)

that might be better left unmodeled. These developments have led to a subfield of

behavior-based robotics (Arkin, 1998). A number of studies illustrate the develop-

ment of both language (Steels & Vogt, 1997; Roy, 1999; Oates, 2001) and knowledge

representations (Cohen et al., 2001; Kuipers, 2000; Kupiers et al., 2005; Papudesi

& Huber, 2006) in computational systems that depend on the physical sensory and

motor configurations of the robot to engage the environment actively. This is often

referred to as a process of “grounding” empirical knowledge.

2.3.2 Affordance Modeling

Psychologists argue that intelligence is inseparably grounded in an organism’s

behavioral interaction with the world, shaping our processes of development and

cognition (Wilson, 2002), our conceptual thought (Johnson & Lakoff, 1980), and our

understanding of the world in terms of behavior it affords (Gibson, 1977). Affordances

create ontologies grounded in agent-world interactions implying that knowledge ac-

quisition is inextricably related to embodiment.

21

There has been a large amount of recent computational work on robot learning

techniques for extracting environmental affordances. Chamero defined affordances

as a relationship between an agent and an object in terms of the potential for ac-

tion (Chamero, 2003). Fitzpatrick examined affordances for pushing and grasping

objects (Fitzpatrick et al., 2003; Sweeney & Grupen, 2007; Saxena et al., 2007; Stark

et al., 2008). Stoytchev et al. looked at the affordances of robot tool use and the

sounds objects make when manipulated (Stoytchev, 2005; Sinapov et al., 2009). Af-

fordance learning for navigation tasks has also been applied to the domain of mobile

robots (Rome et al., 2006; Modayil & Kupiers, 2007).

The Multi-Sensory Autonomous Cognitive Systems (MACS) group proposed a

general model of affordances in terms entities, behaviors, and effects (Şahin et al.,

2007). In this work, machine learning algorithms are used to predict the percep-

tual effects of taking actions that interact with objects (or entities). The MACS

formulation has been explored on a mobile robot platform to learn affordances for

traversability, pushability, and liftability (by means of a magnetic gripper) (Doǧar

et al., 2007; Uǧur et al., 2009), as well as to ground planning operators for extended

tasks (Uǧur et al., 2009; Lörken & Hertzberg, 2008).

A number or researchers have provided a formalism of affordances called “Object-

Action Complexes” (or OACs), also grounded in the robot’s sensory data, but ulti-

mately used for higher-level planning tasks (Krüger et al., 2009; Geib et al., 2006).

The OACs framework has been used to predict grasp affordances from the visual

appearance of an object for a robot gripper (Kraft et al., 2008; Detry et al., 2009).

Common to these approaches is that robot actions are typically pre-programmed

activities that require no sensory feedback to measure “success.” These activities

make no attempt to ground behavioral objectives in the robot’s closed-loop dynamics.

In contrast, this document examines a formulation of affordances that arises from a

robot’s dynamic sensorimotor interactions with its environment.

22

2.3.3 Intrinsic Motivation

One key tenet of the developmental robotics paradigm is that organisms should be

self-motivated to acquire increasingly complex skills over the long term with minimal

intervention from human programmers or demonstrators. As a result, developmental

roboticists have turned to psychological theories of intrinsic motivation to explore

theoretical models of self-guided exploration and knowledge acquisition.

Psychological theories of motivation go back over half a century. In the 1940’s,

Hull introduced the concept of “drives” such as hunger, pain, sex, or escape in human

behavior, in terms of deficits that the organism wishes to reduce to achieve home-

ostatic equilibrium (Hull, 1943). Later researchers extended the Hullian theory by

introducing drives for manipulation (Harlow, 1950), and for exploration (Montgomery,

1954).

In contrast, White argued that fundamental drives were not the whole story,

suggesting that exploratory behavior often occurs for the sole purpose of gaining

knowledge necessary to achieve competent autonomy (White, 1959). Such behavior,

White claims, is meant to produce knowledge for its own sake as this information

might be useful later in goal-directed (or extrinsically motivated) behavior.

Berlyne proposed a number of intrinsically motivating factors—what he called

the collative variables—novelty, habituation, curiosity, surprise, challenge and incon-

gruity (Berlyne, 1960). He also observed that an organism is rewarded most when

the level of novelty is somewhere between “familiar” and completely “new.” Berlyne

stated that the spontaneous exploratory behavior observed in infants is explained by

these internal drives (Berlyne, 1965).

A number of psychologists examined how an organism may be motivated to im-

prove its cognitive models. Festinger, for example, suggested that there is a drive

to reduce the cognitive dissonance between internal knowledge structures and the

current perception of the organism’s world (Festinger, 1957). Similarly, Kagan in-

23

troduced primary motivators to reduce the discrepancy between cognitive structures

and experience (Kagan, 1972). Linking perception and action, Hunt suggested that

children, in fact, seek out to reduce such incongruity by taking actions to gather more

information (Hunt, 1965). Such an active strategy for exploring an agent’s own cogni-

tive models seems reasonable for robots that develop over the long-term as well and is

related to the computational mechanisms introduced in Chapter 6 of this document.

There has been more recent work in the neuroscience community examining the

biological basis for drives or motivators, both intrinsic and extrinsic. It has been

observed that similarities exist between the activity of midbrain dopamine cells and

existing computational models of reinforcement learning (Houk et al., 1995; Schultz

& Dayan, 1997). Initial results showed the similarity when considering extrinsically

rewarding domains, but more recent studies have argued that this dopamine activity

is more indicative of intrinsic motivators (e.g., novelty or exploration) (Dayan &

Belleine, 2002; Kakade & Dayan, 2002), as well as “prediction error” (Horvitz, 2000).

This research has found that neuromodulator activity in dopamine cells show strong

congruence between sensory stimuli that is novel and unpredicted rewards. It has

been noted that this fact may be due to the underlying rewarding characteristics of

novelty itself (Reed et al., 1996).

Early computational models of theories such as Berlyne’s were explored by Csik-

szentmihalyi who argued that organism strives for experience just beyond their com-

fort zone (Csikszentmihalyi, 1991; Csikszentmihalyi, 1996). He created a system

which was rewarded for reaching situations that presented a new—but modest—

learning challenge.

Other implementations considered models that were concerned with growing the

complexity of their machines (Herrmann et al., 2000). Integrated approaches to

novelty and curiosity in developmental learning began in work by Weng (Weng et al.,

2001; Huang & Weng, 2002; Weng, 2002), and later pursued by Marshall et al. (2004),

24

and Kaplan and Oudeyer (Kaplan & Oudeyer, 2003; Kaplan & Hafner, 2005; Oudeyer

et al., 2005; Oudeyer & Kaplan, 2008). Saunders explored issues of creativity by

creating an agent that pushes the boundaries of its own “artistic” creations (Saunders,

2002). Much of this work provided interesting initial results, but did not focus on

learning skills that could be re-used in later tasks.

Schmidhuber examined how intrinsic motivation techniques can be used to shape

reward in reinforcement learning systems (Schmidhuber, 1991b; Schmidhuber, 1991a;

Schmidhuber & Storck, 1993). Barto et al. demonstrated how to intrinsically moti-

vate a learning agent to learn a re-usable set of skills that can be applied in different,

but possibly related, tasks (Barto et al., 2004; Singh et al., 2004a). Typically this

work focuses on learning options that can be transfered to new tasks (Sutton et al.,

1999). This work includes that by Barto and Singh (Barto et al., 2004; Singh et al.,

2004a), Digney (1998), McGovern (2002), Şimşek and Barto (2004), and Konidaris

and Barto (2007).

Following Schmidhuber, Oudeyer et al. make two useful distinctions in statistical

models of intrinsic motivation (Oudeyer et al., 2007): those that predict the conse-

quences of an agent’s action (Thrun, 1995; Huang & Weng, 2002; Barto et al., 2004),

and those that predict the errors in those predictions (a meta-predictor) (Herrmann

et al., 2000; Kaplan & Oudeyer, 2003). The former approach, the authors argue,

results in systems that will focus on challenging situations that may be too complex

to ever get a handle on. The latter approach remedies this issue by using a meta-

predictor to recognize that certain situations are too complex, or unlearnable. These

situations can be ignored at the expense of situations in which more learning progress

is possible. These approaches, however, may still stagnate from pathological situa-

tions. The authors introduce a more effective means of recognizing learning progress

by not only looking at learning rate, but also considering the contextual similarity

between learning situations to prevent those pathological problems. This work is im-

25

portant because it introduces the idea of an implicit memory in the computational

intrinsic motivation literature.

Intrinsically motivated computation systems are related to earlier approaches in

the statistical and machine learning communities. Federov introduced the idea of “op-

timal experiment design” in which the next sample is chosen in order to minimize the

number of samples and gain the maximal amount of information or return (Federov,

1972). In the machine learning community, such approaches became popular under

the name “active learning” (Thrun, 1995; Cohn et al., 1996). This work has provided

much of the tools and inspiration for the underlying mechanisms of other intrinsically

motivated computational systems. However, it does not speak directly to the creation

of re-useable skills in robot behavior.

2.4 Discussion

This thesis proposes a framework in which a robot can represent and organize its

knowledge structures dynamically and developmentally to support robust strategies

for object manipulation. Manipulation tasks provide a rich domain for studying

developmental learning because they require a grounded understanding of how a

robot can reason about how to employ motor resources into behavior that responds

to multiple domains of sensory data. Furthermore, although competent manipulation

strategies will be imperative for any robot operating in unstructured environments,

little research has focused on how such strategies might be acquired in adaptive robot

systems designed to accumulate knowledge over the long-term. To address these

issues, this dissertation proposes a framework to investigate how a robot can use

techniques of embodiment, intrinsic motivation, and affordance discovery to bias its

exploration to incrementally develop hierarchical manipulation structures that can be

used in a variety of tasks.

26

CHAPTER 3

A COMBINATORIC BASIS FOR ROBOT CONTROL

The control basis framework was orignally introduced by Huber and Grupen as

a means for robot systems to explore the combinatorics of sensory and motor control

circuits in an autonomous learning framework (Huber, 2000). These combinatorics

provide a definition for action that is useful for organizing knowledge into structures

that facilitate generalization and transfer. Huber formulated robot learning in a

discrete event dynamic systems (DEDS) framework, to control the complexity of

a state/action spaces and to ensure that safety and performance specifications are

satisfied during on-line exploration.

The control basis is used to construct state and actions spaces from feedback

controllers by combining elements of a set of artificial potential functions Ωφ, with

elements of the robot’s sensory and motor resources Ωσ and Ωτ , respectively. The

control basis provides a representation in which reinforcement learning techniques

can be used to create value functions, Φ, that define discrete action policies. These

policies are the hierarchical generalization of the primitive control laws that comprise

the control basis. The result is a naturally recursive description of knowledge in

terms of functions (intentions) that underlie behavior. Hierarchical control and the

construction of value functions, Φ, will be discussed in Chapter 4.

All control expressions constructed from the control basis provide force or velocity

reference commands to lower-level closed-loop motor units that actuate the robot.

This framework is diagrammed in Figure 3.1. The process of assembling feedback

control loops from potential fields is discussed in the remainder of this chapter. How

27

Figure 3.1. The hierarchical control basis architecture. Control actions descend
potential functions by submitting reference inputs to lower-levels and ultimately, to
embedded motor circuits. Motor circuits are fixed position and force referenced con-
trollers that produce stable behavior. Programs written using these control actions
ascend value functions describing optimal sequential behavior. H and G represent
feedback and feedforward transfer functions, respectively.

to assemble higher-level programs on top of these feedback controllers is discussed in

the next chapter.

3.1 Artificial Potential Functions

The control basis exploits the fact that a small alphabet of primitive control

elements Ωφ ×Ωσ ×Ωτ can yield a large variety of hierarchical control circuits. How

do we define an efficient basis, Ωφ, for low-level (or native) control actions? In this

section, we examine a set of artificial potential functions that have formal constraints

(e.g., no local minima) that are of general use in adaptive control systems. All of the

control actions employed in this dissertation can be characterized by these potential

functions, as can many other control actions for mobile robots or robot manipulators.

28

The control basis provides a general and unified framework for assembling feedback

control laws when these potential functions are combined with sensory and motor

resources.

Potential function approaches to control require constraints on the shape of the

potential function in order to guarantee asymptotically stable behavior. Rimon and

Koditschek enumerated the conditions for a class of navigation functions that can for-

mally be used as control functions (Koditschek & Rimon, 1990; Rimon & Koditschek,

1992):

• Analytic - Potential φ is an analytic function if it is infinitely differentiable

(i.e., it can be written as a Taylor series). This property guarantees that the

function has a gradient that points toward a minimum.

• Polar - The gradient of the navigation functions create streamlines that termi-

nate at a unique minimum.

• Admissible - The gradient ∇φ of a navigation function must be bounded so

that it can serve as a realistic control input without gain scheduling or scaling.

• Morse - Navigation functions are Morse if they contain no degenerate critical

points (e.g., saddle points).

Careful use of topological constraints on the shape of the potential function can

provide a basis for control that minimizes the problems with potential field approaches

that are commonly cited in the literature (e.g., local minima). We now examine a

number of artificial potential functions that form a basis for the experimental work

in this thesis and describe the conditions under which they can be used to construct

closed-loop controllers.

29

3.1.1 Quadratic Potential Functions

Hooke’s law is an example of a quadratic potential field that describes the strain

energy stored in a spring. It can be employed in the control basis to induce virtual

spring-like properties on feedback errors observed in many domains. Hooke’s law is

defined as:

φs(σref , σact) =
1

2
(σref − σact)T (σref − σact) (3.1)

where the difference between the actual and the reference feedback signals, σact, σref ⊆

Ωσ, captures virtual errors between two features of the same type. This function is

convex and, if the input error is bounded, then it also a navigation function and can

be used for control1. We use this kind of primitive “intention” repeatedly in the con-

trol basis framework to, for instance, build tracking controllers in force and position

domains. Hooke’s law can be employed for:

a) Configuration Control: where the objective is to reduce a relative error

between two n-dimensional robot configurations in the space Cn. Configuration-space

tracking controllers can provide smooth movements to via points defined by a trajec-

tory generator, or can move a robot’s degrees of freedom (DOFs) to locations where

other interesting events occur (e.g., configurations where contact is often made with

objects). Configuration-space control can be useful for maintaining a robot’s end-

effector pose or for tasks such as moving a pan/tilt camera to foveate on a visual

feature.

b) Spatial Control: where the objective is to reduce a relative error between

Cartesian goals in subsets of SE(3). Spatial error tracking controllers can position

1We ensure that errors are bounded in the experiments discussed in this dissertation.

30

a robot’s hand at the location of an object or control its orientation, move a mobile

robot to a desirable goal location (such as a door), or to follow a leader robot (Sweeney

et al., 2002). It also can be used to guide visual servoing tasks that minimize the

visual distance between a robot’s hand and an object (Hager et al., 1996).

c) Force Control: where the objective is to reduce a relative error between con-

tact forces, torques, or moments in subsets of SE∗(3). Force-domain controllers can be

used to maintain a grasp on an object or to actively reduce the magnitude of contact

forces with the environment. Regulation tasks that remove residual force and moment

errors can be used to achieve grasp conditions such as wrench-closure (Coelho, 2001;

Platt et al., 2002) or to perform assembly tasks such as “peg-in-hole.”

3.1.2 Harmonic Functions for Collision-Free Motion

Much attention in the robotics literature concerns how to move robot manipulators

from one configuration to another along a collision-free path. This problem is known

to be PSPACE-hard in the number of degrees-of-freedom of the robot (Canny, 1988),

and is challenging also because it often requires knowing the location of relevant

obstacles that may be dynamic. Many approaches to robot navigation have been

examined over the last few decades (Latombe, 1991). Often, these techniques utilize

sample-based planning methods such as the Probabilistic Road Map (PRM) (Kavraki

et al., 1996) and Rapidly-Exploring Random Tree (RRT) approaches (LaValle, 1998).

Due to the complexity of sample-based methods, however, artificial potential field

approaches have also been developed for robot path planning that make more efficient

use of sensor feedback. Harmonic functions describe many physical processes that

rely on minimum energy configurations such as soap films, laminar fluid flow, the

temperature dissipation in thermally conductive media, and the voltage distribution

in resistive networks. They have been applied in robot systems to find path plans with

31

no local minima and that produce the minimum probability of collisions (Connolly

et al., 1990; Connolly & Grupen, 1994; Akishita et al., 1990). Harmonic functions

satisfy Laplace’s equation,

∇2φh =
∂2φ

∂q2
1

+
∂2φ

∂q2
2

+ · · ·+ ∂2φ

∂q2
n

= 0, (3.2)

for an n-dimensional state-space q. Goals and obstacles define the boundaries of

the navigatable free space in this approach. A harmonic potential field has no local

minima or maxima (type 0 and type 2 critical) points in the interior of this space.

Laplace’s constraint only permits saddle points (type 1 critical points) in the interior

of the free space. The critical points constitute a set of measure zero, so that any

small random perturbation will move the system away from the saddle points and

into areas where a gradient exists. Numerical relaxation methods (e.g., Successive

Over-Relaxation (SOR), Jacobi iteration, or Gauss-Seidel iteration (Burden et al.,

1972)) can solve for harmonic functions quickly in tasks for low-dimensional systems.

Harmonic functions, unfortunately, do not meet all four of the criteria for navi-

gation functions. As a result, they produce paths that minimize hitting probability,

but are not asymptotically stable. This limitation can be overcome by allowing the

system to follow the direction of the potential’s gradient, but shaping its magnitude

before sending it to the plant.

3.1.3 Kinematic Conditioning Functions

Conditioning actions are useful in multi-objective control tasks and can provide

a natural way for an embodied system to get the most out of its sensory and motor

resources (Hart & Grupen, 2007). Metrics based on the scalar condition number of

the manipulator Jacobian have been used to optimize the kinodynamic configuration

of a robot mechanism (Salisbury & Craig, 1982). These metrics are useful for avoiding

singular locations where a robot cannot be controlled in certain directions. Yoshikawa

32

proposed a field for biasing the manipulator Jacobian toward configurations that

optimize the “manipulability” index and avoiding singularities (Yoshikawa, 1985).

Examples of isotropic conditioning techniques that allow a mechanism to be equally

sensitive to input displacements in all directions can be found in (Nakamura, 1991;

Asada & Granito, 1985; Angeles & Lopez-Cajun, 1992; Grupen & Souccar, 1993;

Ranjbaran et al., 1996).

Using similar techniques, anisotropic conditioning can be applied when the task

is well-specified ahead of time. Chiu demonstrated how to utilize the redundancy

of a manipulator to optimize the application of velocities and forces along known

task directions (Chiu, 1987). In this work, a technique was proposed to increase

force/velocity amplification or precision along specific directions. While techniques

for anistropic conditioning are useful for the high-performance transmission of dis-

placements in highly sensitive tasks, Chiu’s approach does not lead directly to a useful

navigation function.

Several conditioning fields have been devised in the course of this dissertation—

each of which captures some independent prerogative of a kinematic system.

a) Range Limits: This field is useful for keeping a manipulator away from

joint range limits. It can provide a greater likelihood that global objectives are met

because it considers the physical limitations of the robot. One possible choice for an

n-dimensional system, implements an n-dimensional cosine field around the center of

each joint’s range of motion. For a set of joint angles θ ∈ Cn, we define

φr(θ) = n−
n∑
i

cos(gi(θi)) (3.3)

where

gi(θi) =
θi − θ̄i

θi,max − θi,min
π. (3.4)

33

In this equation, θi,max and θi,min represent the upper and lower limits of joint i’s

range of motion, and θ̄i = θi,min + (θi,max − θi,min)/2. This field provides a convex

potential that is centered in the middle of the robot’s range of motion over all degrees

of freedom.

Function φr(θ) is the sum of independent cosines over the domain −π ≤ θi ≤ +π

for all i. The diagonal elements of the Hessian are of the form d2φ/dθ2
i = cos(gi(θi))ki

where ki = (π
θi,max−θi,min

)2 and the off-diagonal elements are equal to zero. The field,

therefore, is positive definite and has only one maximum. Because trigonometric

functions are analytic (i.e., they can be represented as a Taylor series), then there

are no interior critical points and the field is Morse. The gradient magnitude ∇φr(θ)

is bounded (between 0 and
√
ki) at every point, and thus the function is admissible.

It follows that φr(θ) is a navigation function because it satisfies the four necessary

requirements.

b) Manipulability: Yoshikawa’s measure of manipulability (MoM) field moves

a kinematic mechanism into configurations that allow for a tradeoff in the ability to

perceive (input) errors and to impart (output) movements (Yoshikawa, 1985). Infor-

mally, it conditions the manipulator Jacobian in a manner that preserves flexibility

and least commitment for unknown future circumstances. Such a methodology is

useful when programming dexterous robots that must behave well in uncertain real-

world environments. In addition, it provides a natural kinematic “sweet-spot” in

the system, and pushes the manipulator away from singular locations. Whether the

manipulability field for a particular robot is a navigation function or not depends on

that robot’s specific configuration. However, it is often a useful objective to maximize

in practice to provide smooth and natural movements for redundant manipulators.

The manipulability field is defined as:

34

φm(θ) = −
√
det(J(θ)J(θ)T) (3.5)

where θ ∈ Cn is an n-dimensional subset of joints that form a kinematic chain and J

is the manipulator Jacobian.

c) Localizability: Kinematic conditioning can be applied to any linear trans-

formation and has been generalized to incorporate acceleration and inertial mea-

sures (Chiacchio et al., 1992; Chiacchio, 2001; Nakamura, 1991; Rosenstein & Gru-

pen, 2002), and also to evaluate viewpoint quality in a stereo system in order to

maximize localization precision (Uppala et al., 2002; Hart & Grupen, 2007). Let us

define a measure of localizability (MoL) field to achieve this latter objective. This

field is defined in terms of the oculomotor Jacobian J(γ l,γr), where γ l and γr rep-

resent the headings toward a feature viewed by both the left and right cameras. The

oculomotor Jacobian transforms visual displacements into Cartesian displacements.

The localizability field is defined as:

φl(γ
l,γr) =

1√
det(J(γ l,γr)J(γ l,γr)T)

. (3.6)

This potential field describes how the Jacobian of the stereo triangulation equations

amplify imprecision. Optimizing for localizability allows for high precision in stereo-

triangulation tasks where the objective is to recover the Cartesian location of a feature

from its visual appearance.

The collection of potential functions presented in this section,

Ωφ = {φs, φh, φr, φm, φl}, (3.7)

provides a number of ways for a robot to re-code its sensory signals into artificial

gradients that precipitate behavior. I argue that this set of potentials can support a

35

rich set of behavioral prerogatives in an embodied system. In the remainder of this

dissertation, I support this argument with demonstrations in which a bimanual robot

employing only this set of potentials learns how to perform a number of hierarchical

manipulation tasks, including stimuli tracking and multi-object assembly.

3.2 Sensory and Motor Signals

We now discuss the sources of sensory and motor signals that provide the specific

means for an embodied system to observe and interact with its environment. These

signals form the sensor and effector sets, Ωσ and Ωτ , that, along with a set of potential

functions Ωφ, define the primitives of the control basis framework.

Although, any given set of sensorimotor resources is particular to a specific robot,

many standard types of signals are used in the robotics literature to govern behavior.

Sensor signals may come directly from “raw” physical devices (e.g., encoders, cameras,

microphones, force/torque strain gauges, etc.), they may arise through mathematical

transformations applied to the information returned by multiple of these devices (e.g.,

via forward kinematics functions, functions for signal localization, etc.), or they may

be sampled from statistical models that the robot builds as it learns about its world.

A robot’s set of motor signals is defined by the degrees of freedom that accept

command inputs. Typically, this set consists of configuration variables or motor

torques, but may consist of “virtual” DOFs defined by sensory transformations (e.g.,

the position of a robot’s hand calculated from the forward kinematics). It is often

useful to group subsets of a robot’s effector variables together into “synergies” that

are controlled concurrently. For example, the motor variables that control a robot’s

arm form a synergy that can allow for reaching movements.

As we examine the following types of sensorimotor signals, we will provide concrete

examples for the robot Dexter seen in Figure 3.2. These sets will define the basis for

all of the experimental work in this document. Dexter has a two degree of freedon

36

Figure 3.2. The bimanual robot “Dexter.”

pan/tilt head equipped with two Sony color cameras and two 7-DOF Whole-Arm

Manipulators (Barrett Technologies, Cambridge MA). Each WAM is equipped with

a 3-finger Barrett Hand with a F/T load-cell on each fingertip. Each hand has four

degrees of freedom (one for each finger, and one for the spread angle between two of

these fingers).

3.2.1 Directly Measured Signals

Robots often provide a number of channels of directly measurable sensory data

(e.g., a robot’s joint encoders or accelerometers). Dexter incorporates the following

types of measurable signals:

a) Proprioceptive signals provide a robot with a sense of the configuration of

its own body by measuring the position of its joints. These variables can capture the

pose of a robot, or can be modified to move the robot in certain directions. Dexter

has a total of twenty-four degrees of freedom that are grouped into five useful motor

synergies to form the set:

37

Ωθ = {θi,arm,θi,hand,θhead | i ∈ {l, r}}. (3.8)

where θl,arm, θr,arm ∈ C7 measure the configuration variables of the robot’s left and

right arms, θl,hand, θr,hand ∈ C4 measure the configuration variables of the robot’s left

and right hands, and θhead ∈ C2 measures the configuration variables of the robot’s

pan/tilt head. This set of resources are also independently actuatable, therefore and

define the effector resources available to Dexter.

b) Force-Domain signals provide a robot with a means of measuring when it

makes contact with objects in its environment (including itself). Forces and torques

can be measured from load-cells, strain gauges, capacitive surfaces, or from examining

the motor currents of a robot’s joints. Dexter has 6-axis load cells on each of its six

fingertips. It will often be useful to consider the forces and torques on each of the

robot’s fingers in isolation as well as the net forces and torques measured on each of

the hands. This set of signals is

Ωf =
{
fh,i, τ h,i fh,net, τ h,net| h ∈ {l, r}, i ∈ {1, 2, 3}

}
, (3.9)

where fh,i ∈ R3 and τ h,i ∈ SO∗(3) are the force and torque values measured on finger

i of hand h, respectively, fh,net =
3∑
i

fh,i, and τ h,net

3∑
i

τ h,i. These signals are repre-

sented in the robot’s world coordinate frame for simplicity.

c) Visual channels of data provide rich sources of information. However, due

to the high information content in visual imagery, it is often useful to consider sub-

channels of information obtained by pre-processing or filtering. For example, a typical

camera image can be decomposed into its RGB or YUV color spaces, or into channels

of hue, saturation, or intensity (HSI). Further pre-processing on these spaces allow for

a system to compute regions-of-interest, (or ROIs) of similar values, or to compute vi-

38

sual flow fields estimating the observed motion of a scene. Techniques for computing

the texture or shape of objects in an image (e.g., N -jets (Koenderink, 1984; Piater,

2001) , SIFT-descriptors (Lowe, 2004), scale-space operators (Lindeberg, 1994)) can

also be applied to compute a variety of visual invariants. The stereo camera pair

located on Dexter’s pan/tilt head provides the robot with a number of visual features

of various types. In the experimental work in this document, Dexter uses a subset of

these features—those pertaining to headings toward ROI centroids of the observed net

motion and of the response from a set of 30 discretized hue, saturation, and intensity

channels (10 each)2. This set is defined as:

Ωγ =
{
γcmotion, γ

c
hue,i, γ

c
sat,i, γ

c
int,i | i ∈ {1, ..., 10}, c ∈ {l, r}

}
, (3.10)

where γli, γ
r
i ∈ SO(2) are headings toward ROI features on channel i (e.g., motion,

hue-color 7, saturation channel 3, etc.) in the left and right camera image, respec-

tively. Of course, depending on the scene viewed on a robot’s cameras, many of

these features may not be well-defined at any given time. For example, if no net mo-

tion is observed on the robot’s left image plane, then γ lmotion is evaluated as undefined.

3.2.2 Kinematic Transformations

Transformations on raw sensory information allow for a number of virtual sources

of data. For example, many robot tasks involve the manipulation of entities in Carte-

sian space, something a robot such as Dexter does not have direct access to. However,

Cartesian quantities are easily recovered from other sensor sources through kinematic

transformations. We discuss two such transformations next.

2In the experiments, environments are kept simple to make conspicuous the appearance of objects
we wish to teach Dexter about.

39

a) Forward kinematic functions map joint angle configurations of a robot arm

to Cartesian space (Craig, 2004). These functions require knowledge of the robot’s

geometry (e.g., via Denavit-Hartenberg (DH) parameters). It is natural to express

many kinds of subtasks as references in x ∈ R3, R ∈ SO(3), or combinations thereof.

Therefore, we define two standard kinematic transformations:

fp(θi) = xi (3.11)

fr(θi) = Ri (3.12)

where xi ∈ R3 is a position and Ri ∈ SO(3) is an orientation of an articulated

mechanism with configuration variables θi. The following set describes the positions

and orientations of Dexter’s hands (or end-effectors):

Ωp =
{
xi,arm,Ri,arm | i ∈ {l, r}

}
, (3.13)

where xi,arm = fp(θi,arm) and Ri,arm = fr(θi,arm) for i ∈ {l, r}. Differentiating these

functions with respect to the configuration variables θi produces the manipulator Ja-

cobian that describes the sensitivity of xi to changes in θi.

b) Stereo triangulation functions can recover the Cartesian position of features

seen on multiple cameras by considering the viewing geometry. The triangulation

function takes as input the headings towards a feature i viewed by both the left and

right cameras, (γ li,γ
r
i), and returns that feature’s Cartesian position,

ft(γ
l
i,γ

r
i) = xi. (3.14)

Differentiating this function with respect to the input headings produces the oculomo-

tor Jacobian. Dexter uses this equation to compute Cartesian positions corresponding

40

to the thirty-one potential channels of visual data in Ωγ:

Ωv =
{
xmotion,xhue,i,xsat,i,xint,i | i ∈ {1, ..., 10}

}
. (3.15)

3.2.3 Internal Models

As a robot interacts with its world, it can learn statistical models of configurations

that tend to lead to rewarding events and use these models to inform future searches.

For example, a mobile robot can learn that certain locations in a room (e.g., a book

shelf or a toy bin) have often contained play objects in the past. When it desires to

play with these objects again, the robot can drive to these locations and to see if they

are present.

We denote the set of models for the robot using set Ωm. Because the number of

such models may grown continually over a robot’s lifetime, it is difficult to estimate a

reasonable upper bound on the size of this set. In the next chapter, we will examine

how elements of Ωm can improve a robot’s ability to achieve reward.

3.2.4 Typing

This section introduces a number of sources of sensory information and abstrac-

tions of these signals that can be used in control programs. Control circuits, however,

require strictly typed inputs and outputs to behave as intended (Henderson & Shilcrat,

1984). Typing is important for guaranteeing correct control expressions as well as for

enabling behavioral abstraction. For example, kinematic conditioning metrics, such

as those presented in Section 3.1.3, can be applied to any collection of configuration

variables, regardless of the specific mechanism they represent. Similarly, “reaching”

41

tasks that move a robot’s end-effector to a Cartesian position defined by triangulation

can be implemented for any combination of hue, saturation, and intensity features.

Sensory signals of one type can sometimes be transformed—or typecast—into sig-

nals of a different type, via the forward kinematics or stereo triangulation equations

(or their inverses). Typecasting creates dexterous alternatives for controlling robots,

and allows combinations of control tasks to be constructed in different state spaces

and combined in some joint space. The notion of typing underlies the approach for

the generalization and transfer of control programs that is presented in Chapter 5,

and will be discussed in more detail at that point.

Enforcing typing constraints and allowing automatic typecasting between signals

makes it possible to implement a formal programming specification for the control

basis that can facilitate code re-use and control construction, and can generate search

spaces for machine learning algorithms. A Control Basis Applications Programming

Interface (or CBAPI) was implemented using Microsoft Robotics Developer’s Stu-

dio (Microsoft Co., 2008) middleware and used to perform all of the experimental

work in this dissertation (Hart et al., 2009).

This section also introduced a set of sensory signals that can provide a large set

of basic feedback information for the robot Dexter. Let us define the control basis

sets of sensor and motor resources for Dexter used herein as:

Ωσ , {Ωθ,Ωf ,Ωγ,Ωp,Ωv,Ωm}, (3.16)

and

Ωτ , {Ωθ,Ωp}, (3.17)

where the elements are all of the sets defined for Dexter in this section. The effector set

includes both the configuration variables Ωθ because they can be controlled directly

42

Type Space
Configuration variables Cn
Wrench coordinates SE∗(3)
Force vectors R3

Torques SO∗(3)
Headings SO(2)
Cartesian coordinates SE(3)
Cartesian positions R3

Cartesian orientations SO(3)

Table 3.1. Dexter’s Resource Types.

as well as “virtual” effector variables Ωp that can accept input commands via the

manipulator Jacobians. The set of types supported by these resource sets is displayed

in Table 3.1.

The sets Ωφ, Ωσ, and Ωτ define a large combinatoric space, but other resource

allocations could be used for Dexter. Nevertheless, we will demonstrate how this

particular specification supports a vast amount of manipulation behavior.

3.3 Typed Control Expressions

The triples formed by combining one element from Ωφ with subsets of Ωσ and Ωτ

provide the basis of all primitive control actions a robot can use to build integrated

behavioral programs. In this section, we will show how to (1) construct control

expressions from these triples, and (2) how to combine control expressions into multi-

objective laws that do not sacrifice the shape properties of the individual controllers

(i.e., the navigation function conditions).

3.3.1 Primitive Control Actions

Primitive actions in the control basis framework are closed-loop feedback con-

trollers constructed by combining a potential function singleton φ ∈ Ωφ, with feed-

back signals σ ⊆ Ωσ, and motor variables τ ⊆ Ωτ . In any such configuration, φ(σ) is

43

a navigation function defined to satisfy properties that guarantee asymptotic stability

and no local minima, as discussed in Section 3.1.

A closed-loop controller in the control basis, c(φ, σ, τ), describes a circuit that

iteratively computes reference inputs to low-level motor units. The sensitivity of the

potential to changes in the value of motor variables is captured in the task Jacobian

J = ∂φ(σ)/∂τ , where J# is the Moore-Penrose pseudoinverse (Nakamura, 1991).

Control signals are computed by the expression:

∆τ = −κ
(
J#φ(σ)

)
, (3.18)

where κ is a positive gain3. Under this control law, the system follows the negative

gradient of the potential toward stable attractor states where ∇τφ(σ) = 0. All con-

trollers in the control basis framework define linear dynamical systems that suppress

disturbances from the environment.

3.3.2 Co-Articulation

Multi-objective control actions are constructed by combining control primitives

in a prioritized fashion. Consider two control actions, a higher priority controller

c(φ1, σ1, τ1) and a lower priority controller c(φ2, σ2, τ2). To ensure that the lower pri-

ority objective does not destructively interfere with the progress of the higher priority

objective, we combine control objectives using nullspace projection (Nakamura, 1991).

If the effector variables τ1 and τ2 are of different types, the lower priority objective

must first be transformed into the space of the higher priority objective. Let the

configuration variables of τ1 = q1 = [q1 . . . qm]T . Let g(·) by a function that maps τ2

into the same space as τ1 so that g(τ2) = q2 = [qk . . . qn]T , where, in general, k may

be less than m, and moving q2 has an effect on q1. We now show how to compute a

3In all of the experiments in this document κ = 1 for simplicity.

44

composite output signal in the space τ = q1 ∩ q2 = [q1 . . . qn]T . First we define the

individual task Jacobians

J1 =
∂φ1

∂q1

=

[
∂φ1

∂q1
. . .

∂φ1

∂qk
. . .

∂φ1

∂qm

]
∈ R1×m, (3.19)

and

J2 =
∂φ2

∂q2

=

[
∂φ2

∂qk
. . .

∂φ2

∂qm
. . .

∂φ2

∂qn

]
∈ R1×(n−k+1). (3.20)

We pad these Jacobians with zeros in order to represent them in τ , so that

J̄11 =
∂φ1

∂q1

=

[
∂φ1

∂q1
. . .

∂φ1

∂qk
. . .

∂φ1

∂qm
0n−m

]
∈ R1×n, (3.21)

and

J̄22 =
∂φ2

∂q2

=

[
0k−1

∂φ2

∂qk
. . .

∂φ2

∂qm
. . .

∂φ2

∂qn

]
∈ R1×n. (3.22)

With this padding each transformation reflects its insensitivity to changes in the

values of variables outside the domain of the corresponding control objective. The

change in output of the superior action in the domain of τ is

∆τ = −κ1

(
J̄

#
11φ1(σ1)

)
. (3.23)

The change in output of the subordinate action, however, must be projected into the

nullspace of the task Jacobian of the superior objective in τ ,

N12 =
(
I− J̄

#
12J̄12

)
, (3.24)

where

J̄12 =
∂φ1

∂q2

=

[
0k−1

∂φ1

∂qk
. . .

∂φ1

∂qm
. . .

∂φ1

∂qn

]
∈ R1×n, (3.25)

45

before it can be added to the output. The resulting prioritized composite control law

is

∆τ = −κ1

(
J̄

#
11φ1(σ1)

)
− κ2 N12

(
J̄

#
22φ2(σ2)

)
. (3.26)

This control law can be extended to all combinations of n-fold concurrency re-

lationships between control basis actions. We use the “subject-to” operator “/” to

represent the prioritized combination between any two such control actions (Huber

& Grupen, 1996; Huber, 2000). The control expression c2 / c1—read, “c2 subject-to

c1”—provides a useful shorthand notation for Equation 3.26.

3.3.3 Examples

We now provide two examples in which co-articulated control basis expressions are

implemented on the robot Dexter to improve its performance in two different tasks.

These expressions are assembled from Dexter’s task-independent—native—resource

sets, but are used in the context to reach out to objects and to facilitate visual

classification. Both examples emphasize the utility of “uncommitted” conditioning

actions in task-directed behavior.

3.3.3.1 Kinematically Conditioned Reaching

In this first set of demonstrations, we examine the effect of moving Dexter’s right

arm to an object placed in locations in the robot’s workspace while optimizing kine-

matic conditioning objectives in the nullspace. By doing so, the robot can perform

actions while trying to keep away from joint limits and singular configurations. These

demonstrations are adapted from those provided in Hart and Grupen (2007). Con-

sider three controllers:

46

PosturalBias is a kinematic conditioning control action that biases the posture of

a robot mechanism toward the middle of its range of motion via φr. In this example,

it is employed for the robot’s right arm and is defined as

PosturalBias(RightArm) , c(φr,θr,arm,θr,arm). (3.27)

Substituting this parameter set into Equation 3.18, motor variable displacements can

be computed as:

∆θr,arm = −
(
∂φr(θr,arm)

∂θr,arm

)#

φr(θr,arm). (3.28)

Manipulability is a kinematic conditioning control action that optimizes the ma-

nipulability metric according to φm. In this example, we optimize this metric with

respect to the robot’s right arm, defined as

Manipulability(RightArm) , c(φm,θr,arm,θr,arm). (3.29)

Control outputs from this controller can also be computed by substituting this pa-

rameter set into Equation 3.18.

Reach is a tracking control action that uses the virtual spring potential function φs

to reduce the Cartesian error between the end-effector and a reference position. In

this example, Reach action is implemented to move Dexter’s right arm, xr,arm ∈ R3

(computed from the robot’s forward kinematics), toward the position of a highly-

saturated object xsat,10 (computed by triangulating the visual feature (γ lsat,10,γ
r
sat,10)

viewable on both of Dexter’s left and right camera images), and is defined as:

Reach(Sat-10,RightArm) , c(φs, (xsat,10,xr,arm),xr,arm). (3.30)

47

(a) (b)

Figure 3.3. Frames (a) and (b) show the robot before and after reaching to a
highly-saturated object with its right arm.

Let us define an error vector ε=(xsat,10−xr,arm). Using Equation 3.18, effector variable

displacements for Reach are computed as follows:

∆xr,arm = −
(
∂φs(xsat,10,xr,arm)

∂xr,arm

)#

φs(xsat,10,xr,arm) (3.31)

=
(
(xsat,10 − xr,arm)T

)#(1

2
(xsat,10 − xr,arm)T (xsat,10 − xr,arm)

)
(3.32)

=
(
εT
)#(1

2
εTε

)
=

1

2
ε. (3.33)

In the following demonstration, a highly-saturated object was placed in twenty-

five, uniformly distributed locations on the table in front of Dexter in a 0.4m× 0.8m

square. Three composite control laws are constructed and executed, each with the

reaching controller as the superior objective. For one control law, this was the only

controller employed. The other two laws employed each of the kinematic conditioning

controllers as an inferior objective. These three laws are defined as:

48

c0 , Reach(Sat-10,RightArm)

c1 , PosturalBias(RightArm) /Reach(Sat-10,RightArm)

c2 , Manipulability(RightArm) /Reach(Sat-10,RightArm)

The change in potentials for all of the controllers under all three laws were recorded

over the twenty-five reach actions. Figure 3.3 illustrates this behavior starting from

the center of the arm’s range of motion. An example reach is seen in Figure 3.3(a)

and Figure 3.3(b).

Figure 3.4(a) shows the average potential φs for the reaching action over all runs.

We see how the quadratic error function causes the system to decrease steadily to

the goal. Figure 3.4(b) shows the average value of the postural bias potential over

the course of the reaching actions performed under control laws c0 and c1. Because

the robot begins each action at the minima of this field, the potential only increases

as the reaching action is performed. However, in the case where the range of motion

controller is optimized in the nullspace, the increase in this metric grows less, on

average, than the case where this objective is not optimized, thus staying further

away from joint limits. Figure 3.4(c) shows the manipulability potential over the

course of the reaching actions performed under control laws c0 and c2. In the case

where the manipulability controller is optimized in the nullspace, the increase in this

metric grows less, on average, than the case where this objective is not optimized,

thus keeping the robot further away from undesirable singular configurations.

3.3.3.2 Conditioning for Sensor Acuity

In visual classification tasks accuracy can be improved by optimizing the viewing

geometry of the object to be classified. For Dexter, this can be accomplished by pick-

ing up the object and moving it closer to the robot’s cameras via the localizability

49

metric. Consider the following two controllers:

Touch uses the virtual spring potential φs to apply a small magnitude force in a

desired reference direction. In this example, Dexter uses Touch to apply a net

force of 0.2N along the normal direction of its palms (the z-direction of each arm’s

end-effector coordinate frame), such that lfl,ref = rfr,ref = [0 0 0.2]T . Rotating

these force references into the world frame, we have fr,ref = (Rr,arm)(rfr,ref) and

fl,ref = (Rl,arm)(lfl,ref), where Rl,arm and Rr,arm are the rotation matrices captur-

ing the orientation of the left and right end-effectors computed from Equation 3.12.

If these force references are tracked on both of Dexter’s hands simultaneously, this

action maintains a simple bimanual hold on an object. Touch minimizes the error

between fref =

 fl,ref

fr,ref

 and the perceived net forces fnet =

 fl,net

fr,net

 by moving

the position of each of the robot’s arms xarms =

 xl,arm

xr,arm

. This controller is defined

as:

Touch(BothArms) , c(φs, (fref , fnet),xarms). (3.34)

Touch achieves its objective by adjusting the reference Cartesian endpoint position of

a virtual spring in response to force errors. If we define the error vector ε=(fref−fnet),

then, by Equation 3.18,

50

∆xarms = −
(
∂φs(fref , fnet)

∂xarms

)#

φs(fref , fnet) (3.35)

= −
(
∂φs(fref , fnet)

∂xarms

)#(
1

2
(fref − fnet)

T (fref − fnet)

)
(3.36)

= −
(
∂φs(fref , fnet)

∂fnet

∂fnet
∂xarms

)#(
1

2
εTε

)
(3.37)

= −
(
−(fref − fnet)

T ∂fnet
∂xarms

)#(
1

2
εTε

)
(3.38)

=
(
εT
)#(1

2
εTε

)
=

1

2
ε. (3.39)

Touch allows Dexter to hold simple objects like balls or boxes when they are placed

between the robot’s hands.

A similar Touch strategy can be used for the individual fingers of Dexter’s hands.

Because of the geometric structure of Dexter’s hand, simultaneously “Touch-ing”

the same object with all three fingers often forms a primitive grasp. This is the

control basis analog of the palmer grasp reflex in humans, and demonstrates how an

embodied system’s morphology can be exploited to accomplish behavior. We will call

this primitive grasp a “grab.” It should be noted that more robust grasp strategies

exist that achieve wrench closure on objects (Coelho, 2001; Platt et al., 2002), but

we will be satisfied with Touch in this dissertation due to its simplicity.

Localizability is a conditioning action that optimizes the localizability metric φl

defined by Equation 3.6. It can be used as a primitive form of viewpoint control—or

inspection—for objects held by a robot. In Figure 3.5, Dexter uses this controller

to optimize its viewpoint on a white (intensity channel 10) box observed by the

heading features, (γ lint,10, γ
r
int,10). This action moves the centroid of the hand positions

xavg = 1
2

(xl,arm + xr,arm) subject-to a bimanual grab. Localizability is defined as:

Localizability(Int-10,BothArms) , c(φl, (γ
l
int,10,γ

r
int,10),xavg). (3.40)

51

Using Equation 3.18, effector variable displacements for Localizability are com-

puted as follows:

∆xavg = −

(
∂φl(γ

l
int,10,γ

r
int,10)

∂xavg

)#

φl(γ
l
int,10,γ

r
int,10) (3.41)

= −

(
∂φl(γ

l
int,10,γ

r
int,10)

∂xint,10

∂xint,10

∂xavg

)#

φl(γ
l
int,10,γ

r
int,10) (3.42)

= −

(
∂φl(γ

l
int,10,γ

r
int,10)

∂xint,10

)#

φl(γ
l
int,10,γ

r
int,10). (3.43)

We define a composite control action that optimizes localizability for the view of

an object while maintaining a grab on the object via the Touch controller:

c3 , Localizability(Int-10,BothArms) /Touch(BothArms) (3.44)

To show the quantitative effect of localizability, we demonstrate a classification

task in which Dexter reads the barcode on a package. A barcode pattern belonging to

one of three different sets was placed on the side of a box facing the robot. Each set is

displayed as a row in Figure 3.6(a). Each of these sets contains three test-patterns (for

a total of nine) that have the same maximum spatial frequency bandwidth, designated

as “low,” “medium,” and “high.” Table 3.2 shows the width of the smallest period

T of each barcode pattern, as well as their expected pixel resolution on the robot’s

cameras and the value of the localizability metric φl at three different depths xd.

Note how the localizability metric approaches zero as the position moves closer to

the robot’s cameras (i.e., the depth decreases). These values were calculated for the

640x480 images using a pinhole camera model with a focal length of 837 mm. The

ranges correspond to the location of the box (1) placed in the center of the table in

52

xd = 100 cm xd = 75 cm xd = 50 cm

Thigh = 2 mm 1.67 2.32 3.35
Tmedium = 6 mm 5.02 6.97 10.04
Tlow = 30 mm 25.11 33.48 50.02

φl 0.95 0.43 0.14

Table 3.2. Pixels per Period and φl at Three Object Locations

front of the robot (Figure 3.5(a)), (2) held in front of the robot, (Figure 3.5(b)), and

(3) held at the optimal localizability configuration, (Figure 3.5(c)). The views from

the robot’s left camera at each stage of these locations are seen in Figures 3.5(d)-

3.5(f).

In each configuration, Dexter converted the appearance of the viewed barcode into

a string of intervals based on color (black or white) and bar width. Classification was

performed by finding the lowest mean-squared error match between the perceived test

pattern and the three patterns in the same (known) frequency class. Figure 3.6(b)

shows the accuracy in classification for each pattern set at each of the three locations.

Each classification bar is the average result over ten trials for each pattern set. For

the table location, only the low-frequency patterns were classifiable. When the box

was held in the location in front of the robot, the low- and medium-frequency patterns

were classifiable over 80% of the time. The high-frequencies patterns were accurately

classifiable just under 80% of the time when the box was moved to the localizability

“sweet-spot.”

3.4 Discussion

The control basis framework provides a combinatoric means of assembling co-

articulated closed-loop control expressions by combining artificial potentials with el-

ements of a set of sensory and motor resources. Demonstrations of the control basis

were presented in this chapter on Dexter showing uncommitted task objectives—

53

localizing an object, reaching to it, and controlling its viewpoint—can improve the

detection of barcodes recognition task. The value of conditioning tasks depend on

the tradeoffs between the cost of constructing and computing these control gradients

versus the added precision that the conditioning affords given the run-time context.

In the next chapter, we examine how programs of control actions can be represented

in the control basis and acquired in an autonomous learning framework in which a

robot is motivated to discover control affordances. We also show how such programs

can be composed hierarchically.

54

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25
Cartesian Movement Potential

control iterations

po
te

nt
ia

l

(a)

0 50 100 150 200 250 300
0

0.002

0.004

0.006

0.008

0.01

0.012

Postural Bias Potential

control iterations

p
o

te
n

ti
a

l

2nd priority

not optimized

(b)

0 50 100 150 200 250 300

0.075

0.08

0.085

0.09

0.095

0.1

0.105

Manipulability Potential

control iterations

p
o

te
n

ti
a

l

2nd priority

not optimized

(c)

Figure 3.4. Frame (a) shows the potential of the Cartesian movement controller
averaged over 25 uniformly distributed locations on the table in front of Dexter. Frame
(b) shows the potential for the postural bias controller for the same 25 locations.
When that controller is run as a subordinate control action to the Cartesian movement
controller compared to the same metric when that controller is not run. Frame (c)
shows the same comparison for the manipulability controller run as the secondary
objective to the movement action.

55

(a) (b) (c)

(d) (e) (f)

Figure 3.5. Panels (a), (b), and (c) show the three places where the barcode pattern
was classified. Panels (d), (e), and (f) show a screenshot from the robot’s left camera
for the same three locations.

56

(a) (b)

Figure 3.6. Panel (a) shows the barcode patterns used for classification experi-
ments. Patterns (1-3) are randomly generated low-frequency patterns. (4-6) are
medium-frequency patterns, representing the characters A, B, and C, respectively, in
the Code-39 barcode standard. The high-frequency patterns (7-9), are the Code-39
encoded strings ROBOT, DEXTER and AMHERST, respectively. Each pattern
is 10 cm square. Panel (b) shows the classification error for each view of the barcode
patterns in panel (a) for each different box location. Results for each test set are
averaged.

57

CHAPTER 4

SKILL LEARNING

To behave effectively in unstructured environments, robots must interpret an enor-

mous amount of data and decide how to issue coordinated commands to many degrees

of freedom. The control basis framework provides typing constraints that lend struc-

ture to the creation of legal control actions and allow for the efficient organization of

behavior and knowledge. In particular, control expressions are created by allocating

discrete sensory and motor resources to dynamic processes that are robust to environ-

mental disturbances. This discrete nature of control composition makes the control

basis framework amenable to stochastic search. In this chapter, we describe how ma-

chine learning algorithms such as reinforcement learning can explore the structured

control basis in order to create domain-general knowledge. We present (1) a novel

definition of state that captures convergence events in the run-time dynamics of con-

trol actions, and (2) an intrinsic motivator that rewards the discovery of environment

affordances.

The proposed definitions of state, action, and reward allow a robot to learn hierar-

chical control basis programs. Hierarchical representations provide efficient encoding

of complex behavioral programs in a manner that hides complexity and bounds the

size of the state and action spaces explored. They also encourage behavioral re-use by

making available temporally extended policies as single, invokable actions. In the pro-

posed framework, hierarchical programs are built from the bottom up. When a robot

learns a new program, it creates an additional means for exploring its environment

to acquire additional behavioral capabilities.

58

To show the efficacy of the proposed framework, a longitudinal learning experi-

ment is performed on Dexter in which the robot acquires a collection of hierarchical

programs in developmental stages. Each training stage is designed by the programmer

to make intrinsic rewards conspicuous. In the stages discussed, the robot explores a

program space for a fixed number of learning episodes designated by the programmer.

This experimental methodology is used to illustrate the specific learning processes dis-

cussed in this chapter. In general, however, a robot should make its own decisions

about when it has learned all it can from the training context. Chapter 6 introduces

a methodology for habituation that can callow a robot to autonomously make such

decisions.

4.1 A State Representation for Dynamic Processes

Complex systems that must learn from on-line experience are best served by ef-

ficient state representations that capture real-valued sensory and motor signals in

compact forms. Useful structure arises when this data is represented as a series of in-

teracting dynamical systems either generated by the robot (e.g., control processes), or

observed by the robot’s sensors (e.g., environmental forcing functions). The discrete

event dynamic systems (DEDS) approach leverages this fact by capturing state in

terms of discrete events observed in the continuous data (Ostroff & Wonham, 1985).

In the case of control processes, the dynamics (φ, φ̇) created when a controller

interacts with the world provides a natural discrete abstraction of the underlying

continuous state space. Huber provided a binary state representation in which the

predicate pi(φ, φ̇) associated with controller ci(φ, σ, τ) is 0 during the transient re-

sponse of the controller and transitions to 1 when the controller converges to an

attractor (Huber & Grupen, 1997). The change in potential, φ̇, is the observed, time-

based derivative and is not to be confused with the gradient of the field at that point,

∇φ.

59

Figure 4.1. Five trajectories of the error dynamics of a controller as they reach
convergence (the blue circled region). Each trajectory can be modelled from expe-
rience and matched against future controller executions. For asymptotically stable
controllers, φ is non-negative and φ̇ is negative definite and so these trajectories reside
in the lower-right quadrant. This plot is adapted from (Coelho, 2001).

Coelho provided a deeper description of controller state. He developed a predictive

state representation that considers the trajectory of the system over time, fitting that

trajectory to probabilistic models that were learned for a particular task (Coelho,

2001). A discrete state representation for each controller captured the likely pattern

of membership in these learned models that the controller generates. Figure 4.1

shows a phase portrait for five controller trajectory models that converge to two

distinct attractor states. Using such a representation, a robot learned a family of

dynamic models that could parse the run-time events occurring during a grasping

task to recognize the shape of the object being grasped.

60

Figure 4.2. This figure shows an iconic representation of the state transitions for a
dynamic process.

Coelho’s work provided an early example of what was later given a more general

formulation in the machine learning community in the form of predictive state rep-

resentations1. PSRs enrich an agents state space with a (potentially large) vector

of real-valued observations accumulated as the agent takes actions (Littman et al.,

2002; Singh et al., 2004b). The range between PSRs on one side and Huber’s binary

predicate space on the other provide a large spectrum of state representations that

explicitly link actions and observations in controlled processes.

In this dissertation, we will use a simple discrete state definition—more closely

related to Huber—based on quiescence events capturing controller convergence. Qui-

escence events occur when either a controller reaches an attractor state in its poten-

tial or when a lack of progress along the gradient of that potential is observed. In

Figure 4.1, quiescence occurs when the dynamics trajectory reaches the blue-circled

region at φ̇ = 0, whether the potential has been minimized (φ = 0) or not. Formally,

we can define a predicate p(φ, φ̇) associated with controller c(φ, σ, τ), such that:

1This relationship becomes clear if one considers the control command as the action, the model
membership as the state, and the potential dynamics as the observations.

61

p(φ, φ̇) =



X : φ(σ) controller is not activated

− : φ(σ) undefined feedback reference σ

0 : |φ̇| > ε, transient response

1 : |φ̇| ≤ ε, quiescence,

(4.1)

where ε is a small positive constant. When the controller is not activated, the state

evaluates to “X.” If the controller is activated, the state predicate will evaluate to “0”

if there is a target stimuli present in the feedback signal (and φ(σ) can be computed),

or “−” if there is not. The controller runs in the transient state “0” until it loses the

target stimuli or quiesces in state “1.” Figure 4.2 shows an iconic representation of

the evolution of a controller as it interacts with the task domain. Given a collection

of n distinct primitive control actions a discrete state space S can be formed where

s ∈ S is defined as s = (p1 . . . pn). In this chapter, Dexter learns a number of control

programs that utilize this four-predicate state logic.

4.2 Affordance Discovery

The state representation of Equation 4.1 registers convergence events that occur

in the dynamics of a robot’s control circuits. When a convergence event occurs for a

controller that tracks an environmental forcing function measured by elements of the

subset we will call Ωσ(env) ⊆ Ωσ, it creates a closed-loop coupling between the robot

and the world that has a special designation. We call this coupling an environmental

affordance. Affordances are thus measured not only in terms of a perceptual stimuli,

but also in terms of the robot’s ability to engage that stimuli with its motor resources

in a stable control configuration. By modeling affordances defined in this way, a robot

can gain a sense of what it can control and thus increase its ability to perform tasks

in its world. I argue that a robot designed to learn adaptive behavior in unstructured

62

environments over the long-term must be equipped with an imperative to seek out

affordances and the conditions in which they occur.

We now define an intrinsic motivation function for affordance discovery (Hart

et al., 2008b). In the control basis, the discovery of an affordance is measured by the

convergence event

bki =
(
(pk−1
i 6= 1) ∧ (pki = 1)

)
, (4.2)

where pki is the state of a controller ci = c(φi, σi, τi) at step k. The intrinsic motivation

function provides a unit of reward for all controllers that converge at k according to

the function

rki =

 1 : if
(
bki ∧ (σi ⊆ Ωσ(env))

)
0 : otherwise

(4.3)

rk =
∑
i

rki . (4.4)

The restriction that the controller’s feedback signal σi must be an element of

Ωσ(env) prevents reward from occurring for random movements, kinematic condition-

ing actions, actions that track transformed signals, or actions that respond to internal

models the robot may have. As a result, the affordance discovery reward function

partitions control expressions derived from the control basis into two disjoint subsets;

those that track forcing functions originating in external environmental stimuli and

those that do not.

What kinds of controllers produce rewarding events by the affordance discov-

ery motivator? For Dexter, controllers that respond to feedback signals in the set

of visual headings Ωγ and the set of force/torque measurements Ωf monitor forc-

ing functions originating in external environmental stimuli are rewarding, such that

Ωσ(env) = {Ωγ,Ωf}. Consider a visual tracking controller that moves Dexter’s stereo

pair of cameras to foveate on a brightly colored object. Because the appearance of

the object can be monitored by an element in Ωγ, a quiescence event for this tracking

63

controller will represent the discovery of a new “trackable” affordance with respect to

that object. If that object also affords a controlled touch response using a controller

that tracks a force-domain signal in the set Ωf when the robot reaches out to it (and

it does not roll away), that object also has a “touchable” affordance. It is important

to note that not all controllers referenced to feedback signals in Ωσ(env) will always

provide control affordances. An affordance represents a tight coupling between a per-

ceptual stimulus and the robot’s body. If a visual feature, for example, is moving too

fast for the robot to track given the limitations of its motor systems, the controller

will not produce a convergence event and thus not provide a reward.

The procedure for estimating the state/action value function Φ for a set of control

basis actions A and the reward function provided in Equation 4.4 is shown in Algo-

rithm 1. This procedure is called Accommodate() because it shapes Φ to provide

strategies for uncovering affordances in the environment. It executes m reinforcement

learning episodes of no more than T state transitions2 over the state and action space

defined by A. The Q-Learning update rule is shown in Line 16. Accommodate()

also estimates probability distributions of the form Pr(τ |σ, reward) when rewarding

conditions are met (Line 19). Distributions of this form provide primitive memory

structures that encode configurations where the robot has achieved reward in the past.

As described in Section 3.2.3, they can be used as sensory signals in the internal model

set Ωm to inform future searches.

We now present two simple programs Dexter learned using the affordance dis-

covery reward function to find visual and tactile affordances. These programs were

learned using Algorithm 1. The first program, called SearchTrack, moves Dexter’s

pan/tilt head to locations where the robot has previously observed highly-saturated

2For all the experiments in this document, T = 100. A slight modification of the Accommo-
date() procedure could be made to allow it to run until the policy that maximizes return converges,
rather than for a number of episodes that is fixed a priori.

64

Algorithm 1 Accommodate(m, A, T)

1: Let A′ be the set of non-composite actions in A
2: Let S be the state space formed from the predicates of the actions in A′
3: n← |A′|, γ = 0.8, α = 0.1, ε = 0.2
4: for i = 1 to m do
5: k ← 0
6: reward← false
7: while (reward = false) ∧ (k < T) do
8: sk ← (pk1 . . . p

k
n)

9: a← π(sk) (via ε-greedy selection)
10: repeat
11: execute a for one iteration
12: k ← k + 1
13: sk ← (pk1 . . . p

k
n)

14: until sk 6= sk−1

15: evaluate rk according to Equation 4.4
16: Φ(sk−1, a)← Φ(sk−1, a) + α

(
rk + γ maxa′Φ(sk, a′)− Φ(sk−1, a)

)
17: if rk > 0 then
18: reward← true
19: update Pr(τ |σ, reward) for all rewarding control actions c(φ, σ, τ),
20: end if
21: end while
22: end for

pixel regions on its cameras’ image planes, and then tracks these regions to deter-

mine if they afford quiescence. The second program, called TactileProbe, flexes

the robot’s hand to configurations where tactile stimuli tend to occur, and then de-

termines whether the environment affords quiescence in a force tracking controller. In

both cases, the visual and tactile tracking control actions cause reward according to

the affordance discovery motivator. Both learning problems orient the robot to un-

cover a single rewarding control event, and are taught to Dexter in simple, constrained

environments designed to make those events conspicuous.

4.2.1 SearchTrack

In the first learning stage, Dexter acquired a simple skill called SearchTrack

for discovering visual affordances. The training context focused exclusively on the

most highly-saturated pixels in the field of view. We provide a comparison of learn-

65

ing results from two scenarios, one in which the robot explored co-articulated control

actions, and one in which it did not. This comparison demonstrates the quantitative

advantage of co-articulated policies over sequential policies that execute only a single

action at a time. Both scenarios employed the following two primitive control actions:

Track is a control action that pursues a saturation cue on the robot’s left camera by

changing the reference head posture, θhead, according to the virtual spring potential

function φs. The goal is to keep the coordinate of a highly-saturated visual cue,

γ lsat,10, at the left camera’s image center, γ l0 = [0 0]T . This controller is defined as:

Track(Sat-10) , c(φs, (γ
l
0,γ

l
sat,10),θhead). (4.5)

Defining an error vector ε=(γ l0 − γ lsat,10), and plugging these resources into Equa-

tion 3.18:

∆θhead = −

(
∂φs(γ

l
0,γ

l
sat,10)

∂θhead

)#

φs(γ
l
0,γ

l
sat,10) (4.6)

= −

(
∂φs(γ

l
0,γ

l
sat,10)

∂γ lsat,10

∂γ lsat,10

∂θhead

)#(
1

2
εTε

)
(4.7)

≈ −
(
−εT I2×2

)#(1

2
εTε

)
=

1

2
ε, (4.8)

where the Jacobian capturing how pan/tilt displacements effect the view of headings

perceived in the robot’s left camera is approximately the identity matrix I2×2 due to

the fact that the pan and tilt axes intersect at the camera’s optical center. Given

this physical relationship, the perceived heading errors in the image plane correspond

directly to variations in the robot’s pan and tilt configuration.

The quiescence of Track is rewarding according to the affordance discovery mo-

tivator because γ lsat,10 ∈ Ωσ(dir). We see how Track(Sat-10) regulates the position

66

(a) (b)

Figure 4.3. Frames (a) and (b) show the image from Dexter’s camera before and
after the execution of Track(Sat-10). The highly-saturated region that it moves
to center in its image plane is marked in a green ellipse.

of the observed highly-saturated feature on the image plane in Figure 4.3. These

pictures show the view from Dexter’s camera before and after the execution of the

track controller. We see how the saturated region corresponding to the yellow ball

(circled in green) begins in the periphery of the image, but ends up in the center upon

controller quiescence, such that γ l0 =γ lsat,10.

Search constructs and reduces a feedback error from two signals—the current value

of the head’s pan/tilt angles θhead, and a head reference posture θhead,ref—according

to the gradient of the potential function φs, This controller is defined as:

Search(Sat-10) , c(φs, (θhead,ref ,θhead),θhead). (4.9)

θhead,ref is sampled from a probabilistic model of priors for the search target in terms

of pan and tilt head angles,

θhead,ref ∼ Pr(θhead|γ lsat,10 = γ l0). (4.10)

67

θhead,ref ∈ C2 is thus sampled from a distribution of head configurations where the

environment is likely to have afforded Track(Sat-10) quiescence in the past. It is

easy to see that Pr(θhead|γ lsat,10 = γ l0) is closely related to Pr(τ |σ, reward) for the

Track controller that is updated at Line 19 of the Accommodate() procedure.

These distributions are thus used interchangeably in this program.

Search orients the head to postures where the target saturation is likely to be

found on the left camera image plane. It is not rewarding by the affordance discov-

ery intrinsic motivator because the reference for the action is not derived from the

environment, but rather from probabilistic models of past environments. Note that

similar models capturing where other features in Ωγ occur could be used to inform

many additional Search actions.

In conjunction, the Search(Sat-10) and Track(Sat-10) controllers support

the construction of the state space Sst where each state s ∈ Sst is evaluated such

that s = (psearch ptrack), and two possible action sets (dropping the parameter values

for notational simplicity) A1
st = {Search, Track} and A2

st = {Search, Track,

Search / Track, Track / Search}, depending on whether co-articulation is al-

lowed. The following experiment compares polices for asserting the track affordance

using each of the candidate action sets. Dexter learns policies for SearchTrack ac-

cording to the procedure shown in Algorithm 1. Ten trials of 50 learning episodes were

performed for each experiment. At the beginning of each trial, Φ(s, a) was initialized

to zero. The average reward per state transition was recorded for each episode and

averaged over the trials. Each episode ended when a rewarding event occurred (i.e.,

Track quiesced). The distribution Pr(θhead|γ lsat,10 = γ l0) was estimated as a non-

parametric distribution with a small Gaussian smoothing kernel and was initialized

at the beginning of each trial to uniform.

68

In half of all of the episodes, the experimenter presented a highly-saturated object

at a position in front of the robot (in the camera’s initial field of view) as seen in

the image from Dexter’s camera in Figure 4.4(a). In the other half of the training

episodes, no object was presented to the robot. However, other saturation cues were

available in the robot’s environment if the robot “looked around” (e.g., toward the

window to its left, as seen in Figure 4.4(b)).

Figure 4.4(c) shows one of the learned non-parametric distributions at the end

of a trial for SearchTrack estimating Pr(θhead|γ lsat,10 = γ l0). The large peak in

the center of the robot’s pan range corresponds to locations where the experimenter

held objects in front of the robot (Figure 4.4(a)), the smaller peak corresponds to the

configuration where the saturated window region could be seen (Figure 4.4(b)). This

distribution reflects the robot’s knowledge at the end of the trial concerning were

Track affordances occur. This model can thus be used as a prior by the Search

controller to inform future executions to orient the robot to efficiently achieve reward

by the affordance discovery motivator.

For the case in which the action set did not include co-articulated actions, the

robot learned a policy that resulted in the transitions shown in Figure 4.5(a). From

the start state (XX), the policy chooses action Track. If a saturation stimulus

is absent, the state transitions to (X−), thereafter entering a loop that iteratively

searches using Search and then tests for stimuli using Track. When the saturation

cue is detected, the robot enters state (X0) and then continues to execute Track

until it quiesces in state (X1) and receives reward. The average reward graph for

these experiments is shown in red in Figure 4.6(a). It appears that a stable policy is

learned after about 10 episodes.

For the experiment in which the action set included co-articulated actions, the

robot learned the policy that resulted in the transitions shown in Figure 4.5(b). This

policy allows the robot to “interrupt” the search process if a saturated stimuli appears

69

(a) (b)

(c)

Figure 4.4. Frame (a) shows an image from Dexter’s left camera when a saturated
object is presented in front of the robot. Frame (b) shows an image from Dexter’s
camera while viewing window to its left. Frame (c) shows the non-parametric dis-
tributions after 25 training episodes summarizing the pan/tilt configurations where
Dexter expects to observe this range of saturation in the visual feedback.

70

(a)

(b)

Figure 4.5. SearchTrack transition diagrams for the policies acquired on Dexter
in the first stage of learning. Transitions are shown if they occurred with a probability
greater than 20%. The diagrams are characterized by states s ∈ Sst where s =
(psearch ptrack). The policy employs Track first, and Search is chosen only when
no stimuli is immediately present. The state diagram in (a) shows the policy when
only single actions are allowed in the action set. The state diagram in (b) shows the
policy when composite actions are allowed.

71

0 5 10 15 20 25 30 35 40 45 50
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
SearchTrack Reward (avg. 10 trials)

episodes

av
er

ag
e

re
w

ar
d

pe
r s

ta
te

 tr
an

si
tio

n

w/ coarticulation
no coarticulation

(a)

0 1 2 3 4 5 6 7 8 9 10 11
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

SearchTrack Reward w/o Exploration (avg. 50 trials)

episodes

a
v

e
ra

g
e

 r
e

w
a

rd
 p

e
r

s
ta

te
 t

ra
n

s
it

io
n

w/ coarticulation

no coarticulation

(b)

Figure 4.6. Reward plots for the SearchTrack policies learned on Dexter in
stage 1. Plot (a) shows the learning curves for each experiment averaged over 10
trials of 50 episodes each (with 20% exploration). Plot (b) shows the reward for the
learned policies averaged over 50 trials of 10 additional episodes in which there is no
exploration and the stimuli is guaranteed to be found from the first search. The error
bars shows a clear statistical advantage of the co-articulated policy (blue) over the
sequential action policy (red).

72

as the robot moves to the reference location. The policy suggests using action Search

/ Track in all states, allowing the higher priority action, Track, to dictate the

robot’s behavior if the stimuli is present, while performing successive searches in the

track controller’s nullspace, if it is not. The resulting co-articulated policy requires

fewer state transitions on average than the sequential search-then-track policy seen

in Figure 4.5(a). This is apparent by the fact that the blue line (the average reward

for the co-articulation policy) in Figure 4.6(a) seems to be slightly higher, on average,

than the red line (the average reward for the sequential policy). However, because

there are more actions in the action set (four, as opposed to two), it takes about twice

as long for the robot to learn a stable policy.

Due to the high level of exploration in the learning episodes (20%), as well as the

stochasticity in the search process, the improvement of the co-articulated policy over

the single-action policy is not statistically significant, despite an apparent advantage

seen in Figure 4.6(a). To show that the co-articulated policy is in fact better, a

simulation experiment was performed in which both learned policies were run under

similar environmental conditions, except that (1) exploration was turned off, and (2),

in the 50% of the cases where the robot had to employ Search to find the saturation

stimuli, it is guaranteed to find it on the first try. Under these conditions, fifty trials

of ten episodes were performed, and the resulting average reward graphs are shown in

Figure 4.6(b), along with the data’s variance. From this graph it is clear that the co-

articulated policy is in fact better (i.e., it achieves more reward per state transition)

than the sequential policy for the affordance discovery reward function.

4.2.2 TactileProbe

SearchTrack provides a general orient-response control sequence in which the

robot reacts to stimuli in a controlled way if that stimuli is present, or searches for it

if it is not. Although this behavior was conveyed to Dexter in the context of visual

73

tracking, the strategy is applicable to other domains in which a control reference

must first be uncovered before it can be controlled. For example, this strategy can

allow a robot to perform searches with each of its fingers to find tactile contact.

We call such a behavior TactileProbe and teach it to Dexter in a second stage

of learning. TactileProbe employs two primitive control actions. The first is a

Touch controller, similar to that of Equation 3.34, constructed to control a small

reference force on each of the three fingers of Dexter’s right hand so that the robot

can grab simple objects,

Touch(RightHand) , c(φs, (fr,ref , fr,hand),θr,hand), (4.11)

where

fr,hand =


fr,1

fr,2

fr,3

 , and fr,ref =


fref,1

fref,2

fref,3


and fref,i is a reference vector of 0.2N pointing in the inward (palm) direction of fin-

ger i, rotated into the world frame. Because Touch regulates forces observed on the

fingertips derived from contact with the environment it is rewarding by the affordance

discovery motivator. The second action is a Search action in the tactile domain,

and is defined as follows:

Search constructs a feedback error from two signals: the configuration variables of

the robot’s right-hand θr,hand, and a reference posture θr,ref drawn from an internal

model. In this experiment, this reference, θr,ref ∈ C4, is sampled from a distribution

of hand configurations where a force response is felt on all three of the robot’s right

hand fingers, where

74

θr,ref ∼ Pr(θr,hand
∣∣ ||fr,i|| > ε, i = 1, 2, 3), (4.12)

where ε is a small force reference (0.2N). Search reduces the error between θr,ref

and θr,hand by moving the robot’s fingers according to the gradient of the potential

function φs, such that:

Search(RightHandForces) , c(φs, (θr,ref ,θr,hand),θr,hand). (4.13)

Search orients the hand to postures where contact is likely to be found—it increases

the probability that force cues will be found on the fingertips. Note that a similar

control action could be constructed for the robot’s right hand.

Search(RightHandForces) and Touch(RightHand) provide a 2-predicate

state vector s ∈ Stp where s = (psearch ptouch) with four possible actions Atp =

{Search, Touch, Search / Touch, Touch / Search}. A learning stage was

conducted in which Dexter acquired a policy for TactileProbe by means of the

Accommodate() procedure shown in Algorithm 1. A single trial of 25 learning

episodes was performed. Each episode ended when a rewarding event occurred (i.e.,

the touch controller quiesced). At the end of each episode, the one-dimensional pos-

tures of the fingers on the robot’s right hand were added to three Gaussian distribution

models (one for each finger) so that this knowledge can be used in future episodes to

provide samples according to Equation 4.12.

During the learning episodes, the experimenter provided various balls and boxes

to the robot. These objects ranged in size from 7cm in radius to 12cm in radius. The

object was held in place until the robot successfully completed the TactileProbe

episode, resulting in a three-fingered touch.

Not surprisingly, the resulting policy for TactileProbe learned after 25 episodes

resembles that of SearchTrack, substituting the Touch action for the Track

75

Figure 4.7. The transition diagram for the policy learned for TactileProbe using
the robot’s right hand, characterized by the state vector s = (psearch ptouch). Tran-
sitions are shown if they occurred with a probability greater than 20%. The policy
employs Touch first, and Search is chosen only when no stimuli is immediately
present.

(a)

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
0

1

2

3

4

5

6

7
TactileProbe Finger Configuration Distributions

radians

de
ns

ity

finger 1
finger 2
finger 3

(b)

Figure 4.8. Panel (a) shows an image of Dexter’s hand after a rewarding Tac-
tileProbe episode. Panel (b) shows the Gaussian distributions after 25 training
episodes estimating Pr(θr,hand

∣∣ ||fr,i|| > ε, i = 1, 2, 3) and summarizing the finger
configurations where Dexter expects to make contact.

76

action. The transition diagram for this policy is shown in Figure 4.7. The resulting

Gaussian distributions of finger configurations learned after the trial are shown in

Figure 4.8. TactileProbe provides a useful behavior to allow a robot to position

its fingers in contact with the object that it wishes to grab. Variations of this behavior

could also be used to perform grasp pre-shaping to increase the likelihood and the

efficiency of more sophisticated grasping actions. We will see in the next chapter how

TactileProbe can be generalized to allow for a robot to probe with both its fingers

and its hands to seek out controllable tactile stimuli.

This similar structure of SearchTrack and TactileProbe suggest a method-

ology in which abstract—or declarative—policies can be transfered to different pro-

cedural contexts by re-allocating the resources of control actions. The subject of

program generalization will be addressed in Chapter 5. We will restrict our discus-

sion to a methodology in which we allow only re-allocations that maintain the original

type specifications of the original program. We now turn to examine how control basis

programs, like SearchTrack and TactileProbe, can be used as single actions in

hierarchical programs that seek to uncover further environmental affordances.

4.3 Hierarchical Composition

As described in Chapter 2, value functions provide a natural hierarchical general-

ization of potential functions for discrete state/action spaces. Furthermore, perform-

ing greedy ascent on a value function will lead an agent toward maximally rewarding

states where Φ̇=0. The basis for hierarchy in the control basis framework depends

on the abstraction of sensorimotor programs, with all the internal state they require,

in terms of the single, four-predicate state logic of Figure 4.2. Although a program

can have a significant amount of internal structure, the hierarchical learning agent

views this program as a single, temporally extended control action, whose state is

represented the same way as that of all other control actions. Control basis programs

77

are similar to reinforcement learning options (Sutton et al., 1999) with their own

state/action spaces.

In the remainder of this chapter, we present the results of a number of additional

learning stages in which Dexter used the affordance discovery motivator to acquire

hierarchical control basis programs. In each stage, Dexter learned a policy to uncover

a new affordance using the Accommodate() procedure. Each of these programs

employs at least one other control basis program hierarchically. When a program is

used as a hierarchical single action in a new learning program, we will treat it as

having “habituated,” and will fix its policy in place. Furthermore, these programs

will provide no reward from the intrinsic motivator.

4.3.1 ReachTouch

The first hierarchical program Dexter learned asserts the Touch affordance by

combining SearchTrack with arm control tasks. We call this program Reach-

Touch, and it allows Dexter to engage objects that are not physically presented

to the robot (as they were in the TactileProbe example). This program uses

the SearchTrack program hierarchically to find highly-saturated visual features

that it can triangulate, reach to, and touch with its right hand using Reach(Sat-

10,RightArm) and Touch(RightHand) actions.

A learning stage for Dexter was constructed to enable Dexter to learn a pol-

icy for ReachTouch. The robot was provided with three actions SearchTrack,

Reach(Sat-10,RightArm), and Touch(RightHand). These three actions con-

struct an action space Art = {SearchTrack, Reach, Touch, Reach / Touch,

Touch /Reach}3 and a state vector s ∈ Srt where s = (pst preach ptouch) and pst is

the state predicate value of the entire SearchTrack program. Quiescence of the

3Co-articulated actions between primitives and programs were not allowed. How to co-articulate
discrete state/action policies is an open research question, but see (Rohanimanesh & Mahadevan,
2005) for one possible approach.

78

(a) (b)

Figure 4.9. Panel (a) shows Dexter reaching to a highly-saturated object and panel
(b) shows Dexter holding that object with the force controllers in the hand.

Touch(RightHand) controller is rewarding by the affordance discovery motivator

because it signifies an affordance in the environment. One trial of 25 learning episodes

was conducted in this learning stage to allow Dexter to learn the ReachTouch pro-

gram using the Accommodate() procedure.

During approximately half of the learning episodes, a human presented highly-

saturated objects to Dexter, as seen in Figure 4.9(a). For the other half of these

episodes, the human delivered a highly-saturated object in front of the robot in a

location initially out of view of the robot’s two cameras. During a small number

of episodes (10%) no object was presented to the robot. In the cases where the

object was presented to the robot, it was able to grab it using Touch, as seen in

Figure 4.9(b).

By the end of the learning trial, Dexter had learned a policy for ReachTouch to

achieve reward by uncovering Touch affordances. This transition diagram showing

the most likely state transitions that occur under the greedy policy for this program

is shown in Figure 4.10. The robot starts out in state (XXX) and chooses the action

Reach / Touch. If the object is initially in the field of view, the state transitions

79

Figure 4.10. This diagram shows the transition diagram for the policy learned for
ReachTouch after 25 episodes. The state vector is s = (pst preach ptouch) where pst
is the state value of the SearchTrack program. The hierarchical use of Search-
Track is indicated by the abstract transition icon introduced in Figure 4.2.

to (X0−) in which there is a reach goal, but no reference to Touch. If the object is

not initially in the robot’s field of view, the robot transitions to state (X−−), from

which it employs SearchTrack to find a reach goal. When a goal is found, Reach

/ Touch is tried once again, resulting in a transition to state (X0−). From this

state, the robot continues executing Reach / Touch until it either reaches state

(X11), in which reward is received by the intrinsic motivator, or the reach action

converges without bringing the robot’s hand into contact with an object, resulting in

a transition to state (X1−). This latter case occurred in the small number of episodes

in which the robot reached toward visual stimuli that did not pertain to an object

within its reachable workspace (e.g., the window in Figure 4.4(b)).

The simple policy for ReachTouch provides a robust way for Dexter to turn

visual cues into spatial and tactile cues it can engage in different ways. We will next

show two programs in which it is used hierarchically to accumulate still more reward

from the affordance discovery motivator.

80

4.3.2 VisualInspect

In the next learning stage, Dexter acquired a policy for picking up an object

and inspecting it for additional visual Track affordances that might not be initially

visible, either because they are too small or because they are initially on a side of the

object facing away from the robot. We call this program VisualInspect because it

employs a controller similar to that defined in Equation 3.40 to bring highly-saturated

objects grasped in the robot’s right hand to places where the robot optimizes visual

acuity. As new visual features become present through this process of “inspection,”

the robot can move to track them and receive additional reward. A specific training

context is constructed to teach Dexter how it might be able to inspect objects for

new Track affordances.

Three actions are employed in VisualInspect. The first is the hierarchical

ReachTouch program that can grab objects. The second is the Localizabil-

ity controller that maximizes the localizability metric to bring objects grasped by

the robot to the stereo sweet-spot. This controller is defined as:

Localizability(Sat-10,RightArm) , c(φl,γsat,10,xr,arm), (4.14)

where γsat,10 = (γ lsat,10,γ
r
sat,10). Because this controller is used to inspect grasped

objects, it is only defined when the object is held in the robot’s hand. The third

controller is a visual tracking controller Track that samples and tracks additional

hues on the robot’s left camera measured by γ lhue,i, where i ∈ [1, 10]. This controller

tracks visual features in the environment and is thus rewarding by the affordance

discovery motivator.

These actions construct the action set for VisualInspect, Avi = {ReachTouch,

Localizability, Track, Track / Localizability, Localizability /Track},

with states s ∈ Svi where s = (prt ploc ptrack) and prt is the state of the ReachTouch

program. Dexter explored this state and action space for 25 episodes using the Ac-

81

Figure 4.11. This diagram shows the transition diagram for the policy learned for
VisualInspect after 50 episodes. The state vector s = (prt ploc ptrack), where prt is
the state value of the ReachTouch program.

commodate() procedure, receiving reward when the environment affords quiescence

of the Track.

During the 25 episodes, a highly-saturated yellow object with a small blue feature

on one of its sides was presented to the robot as seen in the left camera image shown

in Figure 4.12(a). Sometimes the blue feature was initially facing the robot (25% of

the time), sometimes it was facing away (75% of the time). The transitions that occur

under the policy learned after these training episodes is shown in Figure 4.11. The

robot begins by activating the Track controller. In the cases where an additional

color feature is initially visible (e.g., the blue patch on the ball) the robot will track

that feature through state (XX0) and receive reward in state (XX1). In the cases

where an addition color feature is not initially visible, the robot transitions to state

(XX−). From this state, the policy dictates that the robot use the ReachTouch

program to grab hold of a highly-saturated object and then visually condition its

appearance with the composite action Localizability / Track. As this action

executes, it brings any additional hue features on the object into view, causing a

transition from state (X0−) to state (X00). Continuing this action, the robot will

track the new feature and receive reward when it arrives in state (X01). The appear-

82

(a) (b)

(c)

Figure 4.12. Frames (a) and (b) show Dexter’s left camera image before and after
the execution of the control law Localizability /Track. Frame (c) shows Dexter
after the execution of that law.

ance of Dexter as it performs this sequence of actions for the yellow ball with the blue

patch is seen in Figures 4.12(b) and 4.12(c).

4.3.3 BimanualTouch

In the final stage of learning we present in this chapter, Dexter acquired a pro-

gram called BimanualTouch. This program allows the robot to get more tactile

reward from an object by picking it up with one hand and bringing it into contact

with the other. The ablily to transfer objects between hands is a useful skill for a

bimanual mechanism because it overcomes constraints on the reachable workspace of

83

any single arm. For example, consider a “pick-and-place” task in which an object far

to the robot’s left must be placed far to its right. In this situation, the robot can

pick up the object with its left hand, transfer it to its right hand, and deliver it to

the place goal. Although there may be multiple, redundant ways for a robot to bring

an object into contact with both of its hands (e.g., two concurrent ReachTouch

programs), we provide a solution here that takes advantage of the symmetric mor-

phology of Dexter. Because of the particular structure of Dexter’s body, optimizing

Yoshikawa’s manipulability metric (Yoshikawa, 1985) for both arms simultaneously

causes the robot’s hands to come close together. If the robot performs this action

while maintaining a grab on an object with one hand, it will position the robot to

discover an additional Touch affordance with its other hand.

We allow Dexter to explore three actions. The first is the ReachTouch program,

used by BimanualTouch hierarchically. The second is a composite controller called

ConditionedHold(RightHand) that optimizes manipulability on both arms con-

currently subject to maintaining a hold on the object using the Touch(RightHand)

controller. ConditionedHold(RightHand) is defined as

ConditionedHold(BothArms,RightHand) ,

Manipulability(BothArms) / Touch(RightHand),

where

Manipulability(BothArms) , c(φm,θarms,θarms). (4.15)

This composite controller will ensure that a hold is maintained on the object while

the robot conditions the arm configurations. This controller is undefined when the

Touch controller does not have a reference (the hand is not in contact with an

object).

84

The third controller used in BimanualTouch is another Touch controller, this

time parameterized by the robot’s left-hand finger forces and motor variables,

Touch(LeftHand) , c(φs, (fl,ref , fl,hand).θl,hand), (4.16)

defined similarly as the Touch(RightHand) controller defined in Equation 4.11. In

this program, Touch(LeftHand) is rewarding via the intrinsic motivator. These

controllers construct the action set Abt = {ReachTouch, ConditionedHold,

Touch, Touch / ConditionedHold, ConditionedHold / Touch} and state

vector s ∈ Sbt where s = (prt phold ptouch) and prt is the state of the ReachTouch

program and phold is the state of the ConditionedHold composite controller. The

robot explored this state and action space for 25 episodes using the Accommodate()

procedure, learning a new policy to uncover left-handed Touch affordances.

During the 25 learning episodes, a highly-saturated object was placed in various

locations on the right side of the robot (not always in the robot’s initial field of

view). The transition diagram for the policy learned after these episodes is shown

in Figure 4.13. The robot begins by invoking ReachTouch—which in turn invokes

SearchTrack if the object is initially out of view—to grab the object with its

right hand. After ReachTouch completes in state (1XX), the composite action

ConditionedHold /Touch is run until completion—passing through state (X0−)

as the hands are brought together, state (X00) as the left hand comes into contact

with the object, state (X10) as the manipulability action completes, and state (X11)

as the left-handed Touch quiesces (and reward is received).

4.4 Discussion

This chapter introduced a novel state and reward representation useful for or-

ganizing a robot’s resources into behavioral programs. An intrinsic reward function

85

for affordance discovery was introduced to reward the robot for creating controllable

interactions with its environment. This reward function is designed to encourage a

robot to discover where and how it can use its control actions to engage the world in

a way that is grounded in the robot’s sensory and motor subsystems.

Policies for each of the programs in this chapter were learned in stages using

reinforcement learning in a small number of episodes. Each stage was specifically

designed by the human “programmer” to make a particular rewarding event conspic-

uous. During these stages, however, the robot explored its state/action spaces to

learn a policy to achieve that reward. The focus in these learning stages was not to

provide a completely “hands-off” approach to robot learning, but, on the contrary,

to demonstrate how a robot programmer can easily teach a robot a useful skill by

making certain artifacts conspicuous. In the next chapter, we will show how a robot

can autonomously generalize and adapt these hierarchical programs to new contexts

to achieve reward in more complex situations.

86

(a)

(b)

Figure 4.13. Frame (a) shows Dexter after the completion of BimanualTouch.
Frame (b) shows the transition diagram for the learned policy after 25 episodes.
Transitions are shown if they occurred with a probability greater than 20%. The
state vector is s = (prt phold ptouch), where prt is the state of the ReachTouch
program and phold is the state of the ConditionedHold composite controller.

87

CHAPTER 5

SKILL GENERALIZATION

The behavioral programs discussed in the last chapter were conveyed to Dexter

by restricting the environmental context and the control expressions that the robot

could explore. Such behavioral scaffolding is an appropriate way for a human teacher

to bootstrap intrinsically motivated behavior, but it is necessary to consider how the

robot can transfer what it has learned to more general situations. I argue that any

robot designed to provide dexterous solutions for a wide variety of tasks must be able

to adapt its behavioral knowledge to new contexts, different from those in which that

knowledge was initially acquired.

In this chapter, I address how a control basis program can be transformed into a

unit of behavior called a schema to provide dexterous contingency plans in a variety

of environmental contexts. This generalization is accomplished by factoring existing

control programs learned by the affordance motivator into declarative and procedural

components (Hart et al., 2008a). The declarative structure of a program— capturing

abstract information concerning which combination of objectives are required to meet

a behavioral goal—can be transfered to different contexts. The procedural structure

examines the environmental conditions under which reward is received and dictates

how resources should be allocated to the (abstract) declarative objectives at run-time.

Specifically, our approach allows a robot to find the statistically reliable parame-

terizations of control basis actions that maintain the original typing constraints and

transition dynamics of policies that achieve reward. After a brief discussion of schema

and related computational approaches, we will examine how control basis programs

88

can be factored into abstract policies that can be re-allocated with different sensory

and motor resources in different contexts. The performance gains for this generaliza-

tion technique are demonstrated in simulation and on Dexter.

5.1 Background

Algorithms that allow for the autonomous acquisition of general robot behavior

have continued to pose a significant challenge in artificial intelligence research. Two

recent trends in the literature have addressed the ability to transfer skills learned

in one context to another and to create generalizable representations from context-

specific experience to facilitate transfer. Techniques for skill transfer and generaliza-

tion enable the re-use of knowledge and are often presumed to accelerate learning

in new, related tasks. I argue that a key limiting factor for skill transfer in robot

systems has been a tendency to approach generalization from a task-level perspec-

tive; finding the means to take strategies learned for one task and transfer it to other

related, but human-designated tasks. In contrast, I propose that a robot should

autonomously seek to build task-independent—common sense—strategies for manip-

ulating the world in increasingly complex and general ways. I hypothesize that such

common sense strategies can only be built from the bottom up as a robot learns how

to adapt—or re-parameterize—its existing policies to novel situations.

In this chapter, two criteria for re-parameterization of control programs are inves-

tigated. The first requires that procedural choices adhere to the transition dynamics

of the initial program that is being generalized. Such an approach has been used in

reinforcement learning systems by Ravindran (2004) and has been applied to control

basis programs by Platt (2006). The second technique imposes re-parameterization

constraints by maintaining type compatibility among sensory and motor resources,

and is a formalization of the techniques presented in previous work presented in Hart

et al. (2005).

89

5.1.1 Piagetian Schema

The concept of generalizable units of behavior is related to Piaget’s discussion of

sensorimotor schema (Piaget, 1952). Piaget suggested that schema are formed to fa-

cilitate new agent-environment interactions through a process of accommodation and

that existing schema generalize to new experiences through a process of assimilation.

This chapter addresses how to combine these processes into a unified computational

framework. Declarative strategies are learned in an accommodation phase where

only one procedural choice is relevant. During a potentially open-ended assimilation

phase, these strategies are used to bootstrap learning in a variety contexts where

many procedural choices may exist.

Arbib introduced the notion of perceptual and motor schema as a theory of cog-

nitive organization that could be useful in artificial intelligence (Arbib, 2003). Com-

putational schema that provide contingency plans to accomplish a desired behavior

have been demonstrated in rule-based control systems (Nilsson, 1994), and empirical

cause-and-effect systems in discrete (Drescher, 1991) and continuous domains that

can be explored using computational mechanisms for active learning and intrinsic

motivation (Mugan & Kuipers, 2007; Mugan & Kuipers, 2008).

5.1.2 Computational Approaches

In the machine learning literature, transferring skills from one context to another

has attracted recent interest. Wilson et al. (2007) present an approach for learning

shared structures in Markov Decision Processes that can be applied to multiple tasks.

Mehta et al. (2005) assumes the reward functions to be linear combinations of re-

warding features with only the feature weights varying among otherwise fixed MDPs.

Ravindran (2004) exploits graph homomorphisms in an MDP to learn general policies

in an abstract space. These approaches exploit the underlying structure in a large

90

class of MDPs, but are hard to transfer to real robots because they require large

amounts of training data.

In contrast, Cohen et al. (2007) provided a promising example of how the dy-

namics of control actions can be used to learn schema that can be transfered to new

situations. Similarly, the control basis approach also makes use of low-level controllers

and their dynamics to learn robot-specific knowledge structures that can be general-

ized to accommodate context-specific contingencies (Coelho & Grupen, 1997; Huber

& Grupen, 1997). In this work, general control policies for grasping and mobility are

extended to assimilate new contexts (e.g., 2-fingered grasps vs. 3-fingered grasps) to

provide a greater wealth of behavior.

The framework presented in this chapter is similar to Konidaris’ agent-space op-

tions (Konidaris & Barto, 2007). Konidaris and Barto introduce the problem space

and the agent space. The problem space is related to the procedural structure of con-

trol basis programs in that it captures information concerning the run-time context

of a task. The agent space is related to the declarative structure in that it captures

re-usable policies that an agent can apply to different tasks. In Konidaris’s approach,

the agent and problem state spaces are both constructed a priori. In the design pro-

posed in this chapter, relevant features in the state vector are recovered incrementally

and as necessary as a robot learns increasingly rich procedural policies.

5.2 Controller Abstraction

As discussed in Section 3.2.4, control expressions in the control basis provide

typing constraints on the input sensors and output effectors that are used to compute

control inputs. As a result, a potential function φ ∈ Ωφ, when combined with a

sensory signal σ ⊆ Ωσ with a characteristic input type (CIT) tin ∈ T , and an effector

resource τ ⊆ Ωτ with characteristic output type (COT) tout ∈ T , represents a family

of functionally equivalent controllers we will call an abstract action, a(φ, tin, tout),

91

Figure 5.1. Abstract actions consist of objective functions φ ∈ Ωφ coupled with a
characteristic input type (CIT) and a characteristic output type (COT).

illustrated in Figure 5.1. For example, the abstract action using a harmonic potential

φh represents a class of control actions that provide collision-free motion plans in R3

to a manipulator configuration output in Cn. However, goals and obstacles in φh can

be observations O ∈ R3 derived from a laser scanner, a stereo vision system, a tactile

probe, or any other equivalent sources of position information.

This method of controller abstraction allows us to re-parameterize control actions

in the control basis. We have already seen a number of examples of control basis

re-parameterization in which the Touch and Track controllers, for example, were

applied to different combinations of Dexter’s force sensors, arm variables, or visual

features. Typing constraints provide a large amount of structure pertaining the in-

tentions of a control basis program that make re-parameterizations preserve abstract

behavioral goals.

5.2.1 Abstracting SearchTrack

The SearchTrack program that Dexter learned in the previous chapter cre-

ated models of where training features (highly-saturated pixel regions) occurred and

tracked them on the center of its left camera image plane. The strategy acquired,

however, could equally well be applied to different visual features. In a new learning

stage, Dexter executed its SearchTrack policy for an additional twenty-five train-

ing episodes, this time building a model of where regions of pixel motion occur in its

pan/tilt configuration space and tracking such motions. This was accomplished by

92

(a) (b)

Figure 5.2. Panel (a) shows Dexter’s left camera view while tracking motion during a
typical programming trial, and (b) shows the non-parametric distribution of pan/tilt
configurations learned for motion cues after 25 training episodes. The single peak
corresponds to the place where the experimenter presented motion cues to the robot
during the acquisition of SearchTrack.

“swapping out” the feedback signals to Search and Track with the signals pertain-

ing to high-saturation signals γ lsat,10 ∈ Ωγ, with signals pertaining to motion cues,

γ lmotion ∈ Ωγ. For 50% of these episodes, an object was shaken in front of the robot,

as seen in Figure 5.2(a). The other half of the time, no object was presented to the

robot. Figure 5.2(b) shows the non-parameteric distribution Dexter learned during

these episodes encoding which pan/tilt configurations track motion cues.

To show the wide applicability of re-parameterization for SearchTrack, Dex-

ter was directed to explore headings towards regions of interest in the thirty hue,

saturation, and intensity channels in Ωγ (10 channels each). The result of this ex-

ploration was that Dexter was able to gain a comprehensive “understanding” of the

affordances in its primitive visual environment. For this training situation, Dexter

cycled through each of the thirty HSI channels, parameterizing SearchTrack ac-

cordingly, and gathering data regarding where the environment affords tracking each

σ ∈ Ωγ. Dexter attempted to acquire fifty positive samples of each channel, but gave

93

up if no valid heading was found after ten samples. Figures 5.3, 5.4, and 5.5 show

histograms of pan/tilt locations where regions of each of the thirty channels were

trackable. Most channels produced some response from the environment, although a

few did not (e.g., saturation channels 6 and 9, hue channels 7 and 8, etc.).

In conjunction, these visual signals can be used by Dexter as a primitive back-

ground model for what it expects to see from its cameras. Given that Dexter is a

stationary robot, such a model provides a prior on the entire visual environment the

robot can expect to observe. Furthermore, deviations from this model can direct the

robot’s attention towards new possible affordances. For example, any object placed

in front of the robot, which will itself be comprised of a combination of the above

thirty channels, will result in some deviation from the robot’s prior model. It is easy

to see how this deviation could be used to “trigger” further exploration—for example,

the robot could try reaching out and touching the object, picking it up, etc.

It should be noted that a basis of hue, saturation, and intensity features to describe

the visual affordances of a scene will provide for only the most simple characterization

of the environment. However, the above technique can be applied equally well using

more robust feature descriptors such as SIFT-descriptors (Lowe, 2004) or differential

Gaussian invariants (Lindeberg, 1994) if they are added to the set of heading channels

in Ωγ.

5.2.2 Abstracting TactileProbe

Given an understanding of the robot’s visual background, Dexter can begin to

explore other affordances of objects it encounters. For example, Dexter can explore

locations where force-domain Touch affordances occur to create priors for Tac-

tileProbe. Because Touch is invoked not only by TactileProbe, but also by

ReachTouch and BimanualTouch, Dexter can build a comprehensive under-

standing by a number of strategies.

94

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5.3. Trackable Configurations for Channels of Saturation

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5.4. Trackable Configurations for Channels of Hue

95

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5.5. Trackable Configurations for Channels of Intensity

To explore areas of force-domain reactions, Dexter gathered experience concern-

ing the Cartesian locations where its environment afforded Touch by extracting fifty

samples using either ReachTouch or BimanualTouch. For twenty of these ac-

tions, the robot executed the ReachTouch program with either of its arms to reach

out to a large green table placed in front of the robot. Because the table is large, goal

locations for the reach action were sampled from the observed surface of the table.

For an additional twenty actions, Dexter used the ReachTouch program to reach

out and touch a highly-saturated object placed on this table. In the other ten actions,

Dexter executed the BimanualTouch program on the object with highly-saturated

hue.

Cross-sectional histograms of the gathered touch samples are shown in Figure 5.6.

Figure 5.6(a) shows the top-down view of places that afford Touch. The outline of

the green table from this view is imposed on the image in green. We see that all the

responses occur on or above this table region. The large peak in the center of the

image is the location where the BimanualTouch brings the object to be touched

by both hands, more clearly seen in the side view shown in Figure 5.6(b). We see

96

(a) (b)

Figure 5.6. (a) shows the top-down (xy-plane) view of the Cartesian locations where
tactile responses occur. The outline of the table is shown in green. (b) shows the side
view (xz-plane). The coordinate system has its origin in Dexter’s chest.

samples at the table height (about −0.42m in the z-direction), slightly above the

table height (where the objects were placed), and at the BimanualTouch location

(slightly below 0m in the z-direction).

The resulting samples may be used to build models for the Search action in

TactileProbe even though they were gathered using other programs. These models

can be used to provide Cartesian references for the Reach action in ReachTouch

that are likely to produce a Touch affordance even when no object is visible (maybe

due to occlusion, the camera being damaged, or the lights being out).

These examples should make clear, that by maintaining the typing constraints im-

posed by policies, a robot can efficiently and autonomously explore re-parameterizations

to gather a large amount of experience about the world. This experience forms the

robot’s first cognitive models and function as a simple internal memory characterizing

locations and configurations of where rewarding behavioral events tend to occur. We

97

next examine how a robot can learn how to intelligently adapt control basis programs

to new contexts to provide additional opportunities to achieve reward.

5.3 Control Basis Schema

In the last chapter, we demonstrated how a robot can learn specialized hierarchical

skills in successive training stages. We now describe a process by which a robot

can generalize these skills to new situations in subsequent stages of learning that

preserve the transitional structure (or “intentions”) of the original policies. As a robot

generalizes its programs to support increasingly dexterous procedural contingency

plans, these programs are transformed into knowledge structures we call schema that

can produce reward in many contexts.

The proposed methodology for generalizing control basis programs into schema is

illustrated in Figure 5.7. A policy π is first learned over a state and action space A

and S using specific sensory and motor allocations that work in the training context.

The policy is then factored into declarative (abstract) and procedural components.

The abstract actions are then allocated with type-constrained resources based on the

environmental context f ∈ F in order to preserve the original transition structure

of π. Enforcing strict typing constraints reduces the combinatorial space of possible

resource combinations, making the search space more efficient for machine learning

algorithms to explore. We now discuss how this process can be represented compu-

tationally.

Let the (ordered) declarative and procedural parts of a prioritized control law

ci = c(φ0, σ0, τ0) / · · · / c(φn, σn, τn) be defined, respectively, as follows:

declarative(ci) = (a0, · · · , an) (5.1)

procedural(ci) = (ω0, · · · , ωn) (5.2)

98

Figure 5.7. Sensorimotor programs in the control basis can be factored into proce-
dural and declarative components and generalized to new environmental contexts, by
means of the policy ψ(ai, fj), where ai ∈ A and fj ∈ F .

where each am is a single-objective abstract action consisting of a potential function

with characteristic input and output types, such that am = a(φm, type(σm), type(τm)),

ωm is set of a sensor and effector resources, such that ωm = 〈σm, τm〉 that meet the

original CIT and COT typing constraints of cm, and m = 0 . . . n.

At run-time, each abstract action must be allocated with sensorimotor resources.

Let procedural policy ψ for a schema be a mapping from abstract action a ∈ A, and

context f ∈ F , to a set of sensorimotor resources for each controller,

ψ : (a, f) 7→ (ω0, · · · , ωn). (5.3)

One useful procedural policy for a single-objective abstract action a(φi, tin, tout) is

defined as:

99

ψ(a, f) = argmaxωi
Pr(scur, sdes|ci, a, f) (5.4)

where ωi = 〈σi, τi〉, ci is a controller parameterized by φi and resource model ωi

(that obeys the CIT and COT typing constraints of original control action, such that

type(σi) = tin and type(τi) = tout), scur is the current state, and sdes is the desired

next state along the route to a rewarding state under policy π. Policy ψ can be

extended to multi-objective control laws by finding the set of procedural parameter-

izations that preserve the desired state transition. This technique is reminiscent of

the graph homomorphism technique presented in Platt (Platt, 2006). It is also an

extension of previous work where relational models were used to capture procedural

task knowledge (Hart et al., 2005).

Examining the procedural context of a particular control basis program also sup-

ports inferences regarding when reward is unlikely to occur for any resource allocation.

This likelihood is captured by the probability of achieving reward for a given policy

and context, Pr(reward|π, f). Consider a case in which Dexter explores Reach-

Touch, but no object is present in the reachable workspace: this probability should

be sufficiently low. In such a situation, the schema should report that it is not in a

region of its state-space where its goals can be met, and evaluate to the undefined “−”

condition. It can then inform any higher-level program that is using it hierarchically

that it is unlikely to be able to achieve its goals.

The procedure for how a control basis program can be generalized into a schema

with procedural contingency plans—called Assimilate()—is provided by Algorithm 2.

It is similar to Accommodate() except that, instead of using Q-Learning to learn an

action-value function Φ, it estimates a policy ψ and various probability distributions

that capture procedural information. Assimilate() takes as input the action set A,

a policy π that maps states in the state space S formed by the actions in A to those

actions, a set of resources Ω that can be used to re-parameterize the actions suggested

100

Algorithm 2 Assimilate(A, π, Ω, m, T)

1: Let A′ be the set of non-composite actions in A
2: Let S be the state space formed from the predicates of the actions in A′
3: n← |A′|, ε = 0.2
4: for i = 1 to m do
5: k ← 0
6: reward← false
7: while (reward = false) ∧ (k < T) do
8: observe features f ∈ F
9: sk ← (pk1 . . . p

k
n)

10: a← declarative(π(sk))
11: ω ← ψ(a, f) (via ε-greedy selection), where ω ∈ Ω
12: allocate a with ω to form control action c
13: repeat
14: execute c for one iteration
15: k ← k + 1
16: sk ← (pk1 . . . p

k
n)

17: until sk 6= sk−1

18: update Pr(sk−1, sk|c, a, f)
19: evaluate rk according to Equation 4.4
20: if rk > 0 then
21: reward← true
22: update Pr(τ |σ, reward) for all rewarding control actions c(φ, σ, τ),
23: end if
24: end while
25: update Pr(reward|π, f)
26: end for

by π, the number of learning episodes m to be performed, and a “timeout” parame-

ter T that limits the number of state transitions for each episode (set to 100 in the

following experiments). Line 18 updates the probability distribution used to evaluate

ψ as seen in Equation 5.4. Line 25 updates the probability of achieving reward for

the given policy and the observed run-time context f ∈ F .

5.3.1 ReachTouch Procedural Artifacts

In the last chapter, Dexter acquired a ReachTouch program using Accommo-

date() in a constrained setting. This program provides a policy for the robot to

uncover Touch affordances in its environment using its right hand. The Reach-

101

Touch strategy, however, can be applied equally well to uncover left-handed or

bimanual Touch affordances. In this section, we construct a simulation illustrating

how Dexter can adapt a ReachTouch program through a process of assimilation

into a schema that has procedural contingency plans for handedness and knowledge

concerning when objects are out of reach. We demonstrate how the proposed tech-

nique for generalization improves performance over control basis programs where

these techniques are not employed. We conclude by comparing the simulated results

to the results of learning experiments performed on the real robot. We present three

approaches for learning handedness.

5.3.1.1 Approaches for Learning Handedness

Flat Learning Approach: A “flat” baseline learning experiment that does not

employ any techniques for generalization was first performed in simulation. During

learning, objects of diameter either 50 cm or 10 cm were presented to the robot

in a variety of positions and with a variety of velocities. In half of the training

episodes a ball of the larger diameter was placed in front of the robot. In the other

half of the episodes, a smaller ball was presented, placed in a stationary position

to the left or right sides of the robot or on one side moving with a velocity of 0.05

m/s in the direction of the opposite hand. The larger objects require a bimanual

strategy to successfully track reference contact signals. The smaller and moving

objects require policies that consider handedness and anticipatory reaches. The object

was occasionally presented outside of the robot’s initial field of view, requiring the

use of the SearchTrack program.

In this learning experiment, separate control actions for reaching and touching

with left-, right-, or two-handed options were provided as separate explorable ac-

tions. To reduce the possible combinatoric action space for this learner, we prevented

composite control combinations between the actions, resulting in the action set

102

A1
rt = {SearchTrack,Reach(LeftArm),Touch(LeftHand),

Reach(RightArm),Touch(RightHand),

Reach(BothArms),Touch(BothHands)}.

State predicates were provided in the state description capturing the binary “locale”

and “scale” of the observed object plocale ∈ {left , right} and pscale ∈ {small,

large}, respectively, along with a characterization of its direction of movement

pvel ∈ {left, right, stationary}. These state predicates provide a simplified (dis-

crete) state representation that gives the flat learner an advantage over agents that

learn with real-valued data. The corresponding state space for this learning agent

is S1
rt where states s ∈ S1

rt are evaluated such that s = (pst preach(left) ptouch(left)

preach(right) ptouch(right) preach(both) ptouch(both) pvel plocale pscale). Dexter explored

this state and action space to learn a ReachTouch policy using the Accommo-

date() procedure (with the augmented state represenetation). One hundred trials

of 200 learning episodes were conducted in this learning experiment. Each episode

terminated when reward was received from the affordance discovery motivator by the

quiescence of any of the Touch controllers.

Concurrent Learning Approach: A second learning experiment was performed in

simulation using the techniques for generalization and abstraction proposed in this

chapter. During this learning experiment, the learning agent used the affordance

discovery reward function to concurrently acquire declarative and procedural policies.

The declarative policy was learned using Q-learning with state space S2
rt where states

s ∈ S2
rt are evaluated as s = (pst preach ptouch) and with action set

A2
rt = {SearchTrack,Reach,Touch,Reach /Touch,Touch /Reach}.

A procedural policy was learned in the form of Equation 5.4 based on a joint probabil-

ity distribution estimating Pr(scur, sdes|ci, a, f) with feature set f rt = [xobj, ẋob, υobj],

103

where xobj is the Cartesian position of the simulated object in the robot’s coordinate

system, ẋobj is its velocity, and υobj is its spatial volume (i.e., its scale). In simulation

these quantities were known precisely and observed at the beginning of each episode.

When a declarative action was chosen at each new state transition, the procedural

policy inferred the best parameterization for that action using ε-greedy exploration

(ε = 0.2) based on its experience in the learning trial up until that point. This exper-

iment was repeated for 100 trials of 200 episodes in the same training context as the

flat learning agent (large and small objects; moving and stationary). I hypothesize

that the techniques for abstraction and generalization will give this learning agent

an advantage over the flat learning agent because it has a more compact declarative

state/action space that it can generalize across run-time contexts.

Staged Generalization Approach: In the third experiment, we simulate the per-

formance of a 2-staged learning approach. Dexter first undergoes a period of accom-

modation in which the robot learns a declarative policy π in a constrained training

situation using the Accommodate() procedure. During a subsequent period of as-

similation (via Assimilate()), the robot learns a procedural policy ψ to adapt its

original program into new, more complex situations. In the accommodation stage,

only (smaller) objects with a diameter of approximately 10 cm were placed in a sta-

tionary location on the robot’s right-hand side. During this stage, the robot could

reach to the object by moving its right-arm and the right-hand motor variables

{xr,arm, θr,hand} ∈ Ωτ . The declarative policy was learned using the Accommo-

date() procedure with action set

A3
rt = {SearchTrack,Reach(RightArm),Touch(RightHand),

Reach(RightArm) /Touch(RightHand),

Touch(RightHand) /Reach(RightArm)}

104

and states s ∈ S3
rt where s = (pst preach(right) ptouch(right)). The robot is rewarded when

the environment affords touch actions, captured by the affordance discovery reward

function when the Touch(RightHand) action quiesces. Each episode terminated

when intrinsic reward was received.

After 25 training episodes of declarative learning (the accommodation stage), the

assimilation process began. During this stage, the simulated context was expanded

to the complexity of the other two experiments, and the robot was allowed to per-

form Reach and Touch actions with the left-arm and the left-hand motor variables

Ω ={xl,arm, θl,hand} ∈ Ωτ . The typing specifications of the original policy were pre-

served and the robot explored left-, right-, and bimanual-reach actions. During these

episodes, the robot learned a procedural policy based on a joint probability distri-

bution estimated over the feature set f rt. The learning agent used this policy to

parameterize the abstract actions of the declarative policy at run-time based on its

previous experience in the trial. This experiment was repeated for 10 trials of 200

learning episodes. Twenty-five episodes were executed using the Accommodate()

procedure to estimate a policy π. This policy was then used in 175 episodes of the

Assimilate() procedure with the additional resources in Ω. I hypothesize that this

learning approach will outperform both of the other learning approaches. This learn-

ing agent will be able to bootstrap learning in the complex environments by first

learning in simple situations.

Real Robot Learning Example: A final set of learning experiments were performed

on the real robot and the results were compared to those of the staged learning

experiment performed in simulation. During this experiment, objects with highly-

saturated hues were presented to the robot. As in the simulated staged learning

experiment, a declarative policy was learned by the Accommodate() procedure

with states s ∈ Srt where s = (pst preach(right) ptouch(right)) and actions

105

Art = {SearchTrack,Reach(RightArm),Touch(RightHand),

Reach(RightArm) /Touch(RightHand),

Touch(RightHand) /Reach(RightArm)},

receiving reward according to the affordance discovery reward function when the

Touch(RightHand) controller quiesced. In these experiments, the feature vec-

tor f rt was computed by estimating the position, velocity, and scale of a highly-

saturated visual feature on the robot’s left and right camera frames, (γ lsat,10,γ
r
sat,10).

In the assimilation stage (in which the context was enriched), the C4.5 decision-tree

learner (Quinlan, 1993) was used to estimate the procedural policy (Equation 5.4)

suggesting how the Reach and Touch policies should be parameterized based on

f rt. This algorithm is advantageous because it is simple, fast, and provides intuitive

results that are easily interpretable by a human. In this experiment, 10 trials of 50

learning episodes were performed (25 episodes of Accommodate() followed by 25

episodes of Assimilate()).

5.3.1.2 Comparison of Approaches

Figure 5.8(a) shows the average reward per state transition for the three simulated

ReachTouch experiments. The learning curves are averaged over the 100 simulated

trials and normalized to their optimal average reward per state transition values.

Normalization results in an expected asymptotic reward equal to 0.8 for each learning

agent because ε-greedy exploration strategy is used with ε = 0.2. Normalization

was necessary for comparing results because the flat and factorable optimal policies

requred a different number of state transitions to touch the object and performance is

judged by how long each of the learning approaches take to stabilize to the asymptotic

level of average reward.

106

(a)

(b)

Figure 5.8. Panel (a) shows the average reward per state transtion over 100 trials
for the ReachTouch experiments performed in simulation. Panel (b) shows the
performance of generalized learning on the robot in (dashed-blue) and in simulation
(solid-red).

107

The flat learner (shown in light, dotted gray in Figure 5.8(a)) takes about 140

episodes to stabilize—a long time compared to the other two learning agents—even

with the simplified, discrete state representation and the limited action set with no

composite control actions. If continous state information had been incorporated in-

stead, we hypothesize that its performance would have further degraded compared

to the other learners. The dashed blue line shows the performance of the concurrent

learner that learns the declarative and procedural policies at the same time. While

this learner acquires its policies, it is often challenged by the fact that it can not

discern whether lack of reward is due to having poor declarative organization or to

a poor procedural policy. As hypothesized, however, the concurrent learner outper-

forms the flat learner, asymptotically converging after about 50 learning episodes (on

average). I argue this is because it uses an abstract state/action space that reduces

the explorable search space.

The solid red line in Figure 5.8(a) shows the staged generalization experiment

where the declarative policy is learned first in a contrained accommodation stage.

This agent outperforms both other agents, as hypothesized. At episode 25 the training

context was unconstrained and the assimilation stage begins. After an initial sharp

drop at the beginning of this stage (lasting about 10 episodes), performance rapidly

improves as the procedural policy is learned with contingencies taking into account the

position, velocity, and volume of the simulated object. During these episodes, if the

intial resource allocation did not work, the actions were re-allocated by the stochastic

procedural policy until the desired (declarative) state transition was achieved. This

experiment shows how a policy learned in a constrained setting can assimilate new

contexts quickly with only a temporary decrease in performance. The declarative

policy that this agent learned in the accommodation stage provides structure to its

exploration in the assimilation stage with the richer environmental context. The

108

Figure 5.9. The transition diagram for the policy learned for ReachTouch. s =
(pst preach ptouch), where pst is the predicate value of the SearchTrack program.

result is that more reward is achievable quicker, and performance suffers less as the

context changes.

During the declarative learning portion of the staged learning experiment, the

simulated robot learned a simple policy to get reward. During the assimilation stage,

the policy was adapted slightly as seen by the transition diagram in Figure 5.9. This

diagram is almost identical to the one shown in Figure 4.10, except that it shows a

state transition from (X1−) back to (X0−). This transition occurred because some-

times, when the Reach action failed to produce a tactile response, the procedural

policy stochastically re-parameterized the action with a different resource. If a tactile

response was still not forthcoming, it returned to state (X1−), otherwise the state

transitioned to (X00). This loop in the learned policy effectively allows the simulated

robot to “re-try” its actions with different resources if the observed transition dynam-

ics do not lead to reward. As the robot incorporates more observations to inform its

procedural policy, this process will eventually allow the robot to find the “correct”

109

resource allocation (if there is one) for the current context and transition to state

(X11) where it receives reward.

Figure 5.8(b) shows how the experiment conducted on the real Dexter (averaged

over 10 trials) compared to the simulation results for the staged learner (averaged

over 100 trials). The real robot lags in performance compared to the simulated

agent in the first 15-20 learning episodes, but manages to learn the same policy

illustrated by Figure 5.9 by the end of the accommodation stage (25 episodes). For

these experiments, an object distinguished by highly-saturated features was presented

within reach of the right hand for the first 25 episodes and the robot was able to learn

the initial, declarative policy. After this point, the period of assimilation began in

the less-constrained training context.

Figure 5.10 shows the decision tree learned using the C4.5 algorithm after one of

the training trials on the robot. Other trials produced similar results. This tree indi-

cates that if the ball is large (i.e., it has appreciable volume), then a 2-handed reach

should be used. Moreover, small moving objects indicate that the robot should reach

with the arm that anticipates the movement, otherwise, the object would move out

of the workspace of the hand chosen. Stationary objects indicate the use of the hand

on the same side as the object. This policy reflects clear common sense knowledge

about handedness, scale, and velocity concerning one- and two-hand ReachTouch

options.

The experiments performed on the real robot demonstrate how the proposed

staged learning technique can lead to solutions in relatively short periods of time.

Each episode for ReachTouch takes about 30 seconds to 1 minute (depending on

how stable the policy is). This resulted in a total trial time (50 episodes) of about an

hour. Extrapolating from this, Figure 5.8(a) suggests that a flat learning approach

performed on the real robot would take about three or four hours, even though the

training situation is still relatively simple. It should be clear that as more proce-

110

Figure 5.10. This decision tree shows the resulting procedural policy for choosing
which arm to allocate for reaching based on object volume, position, and velocity.

dural categories are introduced, it would quickly become intractable in comparison.

The staged learning approach, however, overcomes this scaling issue by incrementally

extending the structure—or scaffolding—acquired in previous stages to new contexts.

5.3.1.3 Learning “Out of Reach”

Dexter performed an additional 50 learning episodes in which objects of various

sizes were placed on the table in front of the robot, half of the time outside the

robot’s reach. This new learning stage was conducted for the robot to acquire com-

mon sense knowledge concerning when features do not afford a controlled Touch

response no matter which resources are allocated because they are “out of reach” and

too far away to be touched. The C4.5 algorithm was used to learn a decision tree

based on the feature vector f rt concerning what contexts lead to reward using the

ReachTouch policy and which do not. This tree reflects the probability distribution

Pr(reward|π, f) updated in Line 25 of the Assimilate() procedure.

111

Figure 5.11. This decision tree shows conditions under which ReachTouch is
likely to achieve reward. It captures when objects are out of the robot’s work space
in terms of their position.

The resulting decision tree is shown in Figure 5.11. We see that for objects

placed in x locations greater than 1.17 m in front of the robot or too far over to the

robot’s side in the y-direction, the program is not likely to achieve reward. This tree

represents more knowledge about the run-time context of the robot that can be used

to inform future control decisions.

5.3.2 Hierarchical Generalizations

In the framework presented in this document, control programs are assembled

because they afford controllable interactions with the world. However, each subgoal

in a program can posture the robot to discover even more kinds of affordances. These

programs supply pre-conditions for many other controllable interactions—orienting

the robot for further types of interactions. Thus SearchTrack makes triangulation

possible and greatly improves the probability of generating ReachTouch awards.

Morevover, Touch, TactileProbe, ReachTouch, and BimanualTouch all pro-

vide different contexts in which Dexter can receive reward for the quiescence of a

112

Touch controller. Thus, schema induce categories that can be used in higher-level

schema to accomplish desired subgoals. As a result, generalizations over hierarchi-

cal schema are possible in a policy where entire programs—explored as indivisible

temporally extended actions—are chosen based on the run-time context.

Figure 5.12. A possible re-parameterization of the ReachTouch schema utilizing
the TactileProbe program to achieve reward in place of the Touch primitive.
This schema has states s ∈ S ′rt where s = (pst preach ptp), and pst and ptp are the state
values of the SearchTrack and TactileProbe programs, respectively.

For illustrative purposes, consider a re-parameterized ReachTouch schema where

the Touch action is replaced by the TactileProbe schema as seen in Figure 5.12.

Both ultimately achieve the same rewarding objective (quiescence of Touch), but

each works in different situations. Using Touch in Figure 5.12 relies on Reach

to bring the robot’s tactile sensors into contact with the object. This, however, is

often not the case, say when the object is small. By substituting TactileProbe for

Touch the robot can search for contact within the entire reachable workspace of the

hand. This strategy is likely to work in more cases than just the primitive Touch

action.

113

5.4 Discussion

In this chapter, a computational framework is proposed in which a robot can ac-

quire programs in simple contexts and later generalize them incrementally to address

more complex situations. This framework extends computational models of sensori-

motor schema beyond those already in the literature. The mechanisms developed are

compatible with Piaget’s concept of accommodation and assimilation where existing

behavior conforms to new situations and expands an organism’s capabilities.

The ability to re-apply behavior in different contexts provides a means by which

interaction with a relatively small segment of the environment can induce a greater

potential for categorical distinctions that prove useful in other contexts. For example,

one object may be red-trackable, touchable, and liftable (via BimanualTouch),

while another might be blue-trackable, but not touchable or liftable, and so on. In

the next chapter, we will investigate how long-term memory structures based on

patterns of such categorical distinctions can be assembled, explored, and stored in

memory structures called catalogs of control affordances.

114

CHAPTER 6

WORLD MODELING

In the previous few chapters, a framework was proposed in which a robot can

autonomously assemble hierarchical control strategies out of its sensory and motor

subsystems. Under this framework, a robot can learn behavioral schema that it can

use to model its world and its ability to interact with it. Psychological theories for

interpreting the world in terms of the ability to engage it were initially proposed by

J. J. Gibson in his “theory of affordances,” (Gibson, 1977) and developed further by

his wife Eleanor (Gibson, 2000). A coffee mug, for example, can be interpreted as a

collection of affordances such as “graspable” and “liftable.” Chairs, despite a variety

of physical forms, all share the affordance of being “sit-onable” by human beings.

Functional representations of knowledge—like Gibsonian affordances—provide a

convenient and natural way of organizing cognitive structures in embodied agents

that take actions, such as humans or robot manipulators. Furthermore, they alle-

viate much of the difficulty of interpreting objects in terms of their elusive Platonic

“essence” because they provide a simple means of verification. To test whether an

object holds a particular affordance (e.g., “graspable”) the organism need only try

taking the requisite action (grasping) and observe the result.

In this chapter, we introduce a mechanism to construct patterns of co-occurring

affordances that define entities in the world. This mechanism allows a robot to

explore the conditions in which behavioral schema are likely to provide reward from

the affordance discovery motivator until it achieves sufficient confidence in its internal

models. In other words, until it habituates. The result is a complementary process to

115

the mechanisms for acquiring the behavior in the first place that can guide a robot

towards an enhanced understanding of how it can interact with its environment. We

demonstrate how this technique can be used to assemble “catalogs” of affordances for

objects in the robot’s environment.

6.1 Modeling Affordances

In the last chapter, we examined how a robot can accommodate new programs

in simple training situations that can subsequently assimilate new environmental

contexts. The robot achieved this by finding decision boundaries in the input signals

to its control actions and determining how to engage different resources in different

situations. Formally, the robot learned distributions of the form Pr(reward|f, ai)

capturing the likelihood of achieving reward for action ai ∈ A after observing the

run-time environmental context f ∈ F . We chose to look exclusively at the values of

the feedback signals, σ ⊆ Ωσ, used in the control action set of the schema in order to

restrict a possible infinite feature space to a tractable collection of variables.

Examining the feature set F allows a robot to use its experience to build models of

contexts that are likely to lead to positive reward if a given program is run. We believe

such models best capture the likely affordance of a particular action at any given time.

We therefore call such models “affordance models” defined as the probability

Pr(f |reward, ai). (6.1)

In this document, we will estimate affordance models as multi-dimensional Gaussians

over features f ∈ F .

In the rest of this chapter we examine two methods for intrinsically motivating

a robot to take actions until it is confident in its affordance models. Confidence is

measured as a decrease in the change in variance of the models as experience is gath-

ered. We expect this reward function to be non-stationary in that it should provide

116

diminishing returns for taking the same action repeatedly because its corresponding

affordance model will grow more robust. The result is a process of habituation that

modulates the reward gained by the affordance discovery motivator based on the

familiarity of the run-time context (c.f., (Singh et al., 2004a)).

The modulated reward function is defined as the affordance discovery motivator

(Equation 4.4) multiplied by the habituation metric, such that

rk =
∑
i

(
hki r

k
i

)
, (6.2)

where the habituation metric hki is defined as

hki = |Σk
i − Σk−1

i | − ρi, (6.3)

where Σk
i is the variance of the distribution Pr(f |reward, ai), reward is a boolean

variable, ai is an action (possibly a schema), and ρi is a small positive cost for perform-

ing that action. In general, this cost could be behavior specific, proportional to the

amount of energy expended during execution, but the experiments in this document

all used a fixed cost per action for simplicity. In cases where the affordance model is

a multi-dimensional Gaussian distribution, the variance is computed by summing all

of the elements of the co-variance matrix. The habituation metric evaluates the in-

formation gained for taking action ai based on how it affects the robot’s “confidence”

in the corresponding distribution.

We assume that the variance of a given affordance model converges as more ex-

perience is gathered. Therefore, we expect a robot using reinforcement learning with

this reward function will build stable affordance models over time. Moreover, we

expect the robot to initially get large amounts of reward for engaging novel contexts,

habituating quickly to those contexts that are relatively common. We also expect the

117

robot to spend more time exploring more variable contexts and to react strongly to

contexts that change in “surprising” and unexpected ways.

6.2 Catalogs

How can a robot collect clusters of affordances describing entities (i.e., objects) it

encounters regularly in its environment? Such knowledge is necessary for a robot to

perform dexterous motor skills in an open and unstructured environment.

We attempt to build object models by cataloging systems of controllable events

afforded by the run-time environment. We will define a catalog as a collection of

likely affordances. The construction of a catalog begins by configuring a control

circuit referenced to stimuli in the environment and evaluating whether the current

environment affords quiescence in the resulting controller. Clusters of associated

affordances model objects, groups of objects, or larger contexts that influence the

probability of controllable events. As a result, catalogs are knowledge structures more

abstract than “objects” in that they might contain affordances relating to multi-body

relationships like stacks and assemblies. In this chapter, we examine how to build

catalog models for features relating to a single, real-world object that the robot is

exposed to. In the next chapter, we will investigate how catalogs can incorporate

multi-object affordances.

6.2.1 A Probabilistic Method for Exploring Catalogs

Catalogs of affordances can be explored using the n-armed bandit formalism for

maximizing return and credit-assignment (Sutton & Barto, 1998). Consider a learning

agent that receives a real-valued reward, r ∈ R (possibly stochastic), as a result of

taking n possible actions. The goal of the agent is to maximize return by repeatedly

taking actions and receiving reward. As it gains more experience, the agent updates its

estimates of how much reward is likely to be received per action in order to inform its

118

future selections. If Q(a) represents the expected reward for taking action a ∈ A, then

the agent selects the best action at each time-step a∗ such that a∗ = argmaxaQ(a).

If Q(·) is known a priori this process is trivial. If it is not, it can be estimated from

experience by the update rule:

Qk+1(a) ← Qk(a) + α
(
rk −Qk(a)

)
(6.4)

where k is the time-step, α is a positive constant step-size, and rk is the reward

received after taking action a. At each decision point, an action a is selected—

either greedily or with some amount of exploration—and tested. One exploration

technique (called softmax exploration) selects each action according to the Boltzmann

distribution, with probability

eQ(a)/τ∑
a′∈A e

Q(a′)/τ
(6.5)

where τ is a temperature parameter with initial value τ 0 = 1 and decay rate 0.99. The

n-armed bandit problem is a simple form of the reinforcement learning formalization

in which there is one state and n actions.

To explore an affordance catalog, the robot selects a feature, σi ∈ Ωσ, and instan-

tiates an n-armed bandit problem with the action set containing all the control basis

schema parameterized by σi, such thatA = {SearchTrack(σi), ReachTouch(σi),

BimanualTouch(σi), VisualInspect(σi,σj)
1}. Using the reward function pro-

vided in Equation 6.2 in conjunction with this action set, the n-armed bandit formu-

lation allows the robot to explore and estimate its affordance models. The procedure

for catalog exploration for a set of actions A is shown in Algorithm 3. Line 22 shows

1Note that the VisualInspect action takes an additional feature, σj ∈ Ωσ. Many possible addi-
tional features may exist for a given object, and thus many Track affordances uncovered through
VisualInspect may exist for it. The robot updates its catalog for the object with affordances
relating to each of these additional features.

119

Algorithm 3 ExploreCatalog(A)

1: k ← 0
2: ε← a small positive constant
3: ρ← a small positive cost
4: ∀ (ai ∈ A), initialize Σ0

i = 1 and Q0(ai) = 0
5: repeat
6: reward← false
7: a← argmaxa′Qk(a′) (via softmax exploration)
8: observe features f ∈ F
9: execute a

10: k ← k + 1
11: if a is rewarding by Equation 4.4 then
12: reward← true
13: update Pr(f |reward, a)
14: observe variance Σk of Pr(f |reward = true, a)
15: evaluate rk by Equation 6.2
16: else
17: rk ← −ρ
18: end if
19: Qk(a)← Qk−1(a) + α

(
rk −Qk−1(a)

)
20: update Pr(reward|f, a)
21: update Pr(f |a)
22: until ∀ (ai ∈ A)

(
|Σk

i − Σk−1
i | < ε

)
how the ExploreCatalog() procedure is run until all of the affordances models for

an action set A habituate.

This set of actions will allow the robot to test simple visual- and force-domain

affordances. SearchTrack tests if a feature is trackable, ReachTouch tests if the

corresponding Cartesian location is touchable. BimanualTouch provides a simple

way of checking if touchable objects are also liftable (if it is, the robot is likely to

uncover an additional touch affordance with its other hand), and VisualInspect

augments the catalog with additionally trackable visual features (via Track). In

general, the visual feature set could grow across all channels of hue, saturation, or

intensity (or even other features like texture). In the following demonstrations, only

other hues will be considered for simplicity.

120

(a) (b) (c)

Figure 6.1. Dexter’s first three objects: (a) a large green table, (b) a small basket-
ball, and (c) a red ball with colored splotches on it.

It should be noted that when the robot performs each of its schematic actions

while exploring affordance catalogs, it can apply all of the declarative and procedural

knowledge it has previously learned by the methods discussed in Chapters 4 & 5.

For example, to evaluate Touch-ability, the robot will use its right or left hand

(or both) as appropriate to maximize the likelihood of getting a controllable tactile

response. This capability exploits the dexterity of the robot to evaluate affordances

in many different ways depending on the character of the object and other facets of

the run-time context.

6.2.2 Demonstration: Learning Three Catalogs

We now provide three examples of the robot Dexter exploring affordance catalogs

using the ExploreCatalog() procedure. In the first example, we place a large

green table in front of the robot. In the second, we place a small orange basketball

on that table. In the third, we place a larger red ball with small blue and yellow

features on the table. These three objects are shown in Figure 6.1. Performance

is evaluated both on Dexter and in a simulation environment that generates feature

values according to models learned in the real robot trials.

121

6.2.2.1 Experimental Setup

At the beginning of the first demonstration, the robot begins by searching over

10 hue-space channels for a detectable Track affordance via SearchTrack and

discovers a large green “blob” corresponding to the table the field of view. It then

tests whether this “blob” affords other Track and/or Touch actions via Reach-

Touch, BimanualTouch, or VisualInspect. This latter action will discover any

additional visual affordances via inspection. A NoOp action with no cost (ρ = 0)

is included in its action set to provide a choice to take when all models have con-

verged. This set is defined as A1 = {NoOp, SearchTrack(green), Reach-

Touch(green), BimanualTouch(green), VisualInspect(green,·)}. The Vi-

sualInspect action will be parameterized at run time; at the point when the second

visual tracking controller is about to run. At this point, the robot searches its observ-

able hue-channels for additional (non-green) features. For every channel that provides

a response, an adding an additional VisualInspect action to the action set A1.

As in Chapter 5, we define the feature spaces to be the first order dynamics of

the input signals to each schema’s control actions. The feature space for the Track

affordance models uncovered by the SearchTrack and VisualInspect schema is a

five dimensional vector, f v = [γ lhue,i γ̇
l
hue,i υγ], containing the heading on the robot’s

left camera image to hue-feature i, γ lhue,i (for SearchTrack, this feature relates to

heading towards green features (i = 5); for the VisualInspect, this feature relates

to the heading towards the additional feature of appropriate channel), its area υγ, and

its velocity, γ̇ lhue,i. The feature space for the Touch affordance models uncovered

by the ReachTouch and BimanualTouch schema is a seven-dimensional vector,

fx = [xhue,i ẋhue,i υx], containing the Cartesian location, xhue,i ∈ R3, of the table

found by triangulating the view of the hue-space pixel regions in both of the robot’s

camera images, that region’s estimated 3D volume, υx, and its velocity, ẋhue,i. We

define the affordance models for each of these behaviors to be multi-dimensional

122

Gaussians over these corresponding feature spaces. The models are initialized with

zero mean and unit variance.

Instead of exploring each catalog until all models habituate (Line 22 of the Ex-

ploreCatalog() procedure), each trial in the following examples consisted of 100

actions. This was done to gather a consistent number of data samples for each trial

for analysis purposes. In these experiments, ρ = 0.05, for all schema. The change in

variance after each action is normalized to the maximum value observed during the

trial across all affordance models in the catalog to provide a reward signal between 0

and 1. If the action does not successfully complete (it does not achieve reward from

the affordance discovery motivator), no information is gained, and rk is evaluated as

pure cost. Using this approach, we expect the robot to take actions according to its

confidence in the corresponding affordance model. When the expected information

gain for taking an action becomes sufficiently low, it should favor testing other affor-

dances in the action set. Eventually, we would expect the robot to select the NoOp

action over its other actions as their cost eventually outweighs the expected informa-

tion gain, and NoOp has no cost. When all of the models have habituated, the robot

will have a relatively confident assessment of which affordances can be associated with

the initial feature σi.

In the second and third examples, we place the basketball and the red ball, respec-

tively, on the table and the robot follows a similar process. The action sets A2 and

A3 for these respective examples are similar to A1, except that they use headings and

positions toward orange and red pixel regions, measured on visual hue-channels 3 and

0, respectively, in place of the headings toward green pixels measured on hue-channel

5.

After a single trial of 100 training actions for each of these examples, 25 addition

simulated trials were performed using the estimated affordance models of the form

123

Pr(f |reward, ai) learned on the robot to generate simulated samples. We now discuss

of the results of both the real and simulated examples.

6.2.2.2 Results

Figure 6.2 shows the results of exploring the green table affordances. Figure 6.2(a)

shows the reward after each action for the real robot trial. We see a number of large

spikes during the first fifty actions, before the reward levels out to approximately 0

for the remainder of the trial Figure 6.2(b) shows the number of times each of the

actions in A1 were selected during this trial. The number of successful (rewarding)

actions are shown in blue, the unsuccessful (not rewarding) actions are shown in

green. This figure shows that SeachTrack and ReachTouch were rewarding

100% of the time they were selected. The BimanualTouch and VisualInspect

actions were never rewarding because the table, although consistently Track-able

and Touch-able, is not transferable between the robot’s hands (it is large and the

robot could not grab it with ReachTouch), and it has no additional hue-space

visual features that are Track-able. Over the course of the 100 actions, the robot

selected the SearchTrack action 18 times, the ReachTouch action 44 times,

and the BimanualTouch and VisualInspect actions only 8 and 9 times. These

latter actions were selected relatively few times because they resulted in pure cost,

and no information. The NoOp action was selected 21 times, presumably after the

affordance models for the other four actions habituated.

Using the affordance models and likelihood of reward for each behavior learned

in the real robot trial to generate samples, 25 additional trials were performed in

simulation. The average reward over these trials in Figure 6.2(c). This plot more

clearly shows that, on average, the reward for interacting with the table goes down

to a negligible amount after about 40-50 actions as the affordance models habituate.

Figure 6.2(d) shows the change in variance for the SearchTrack and ReachTouch

124

! "! #! $! %! &! '! (!)! *! "!!
!!+#

!

!+#

!+%

!+'

!+)

"

"+#

Table Catalog Reward

actions

re
w

a
rd

,

,

reward

(a) (b)

0 10 20 30 40 50 60 70 80 90 100
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
Table Catalog Reward (Simulated Over 25 Trials)

actions

re
w

ar
d

reward

(c)

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Table Catalog Model Delta Var (Simulated Over 25 trials)

actions

de
lta

 v
ar

ia
nc

e

SearchTrack Model
ReachTouch Model

(d)

Figure 6.2. These plots show the results of exploring the affordance catalog for the
green table placed in front of Dexter. Plot (a) shows the reward received after each
action for the real robot trial, while chart (b) shows the number of times each action
was taken during this trial. Successful actions (in which affordance discovery reward
was achieved) are shown in dark blue, unsuccessful actions are shown in light green.
Plot (c) shows the average reward for the simulated trials, more clearly showing the
overall habituation. Plot (d) shows the actual change in variance, averaged over the
simulated trials, for the SearchTrack and ReachTouch affordance models.

125

0 10 20 30 40 50 60 70 80 90 100
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Basketball Catalog Reward

actions

re
w

ar
d

reward

(a) (b)

0 10 20 30 40 50 60 70 80 90 100
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
Basketball Catalog Reward (Simulated Over 25 Trials)

actions

re
w

ar
d

reward

(c)

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Basketball Catalog Model Delta Var (Simulated Over 25 trials)

actions

de
lta

 v
ar

ia
nc

e

SearchTrack Model
ReachTouch Model
HandTransfer Model

(d)

Figure 6.3. These figures show the results of exploring the affordance catalog for the
basketball placed on the table in front of Dexter. Plot (a) shows the reward received
after each action for the real robot trial, while plot (b) shows the number of times
each action was taken during this trial. Plot (c) shows the average reward for the
simulated trials, more clearly showing the overall habituation. Plot (d) shows the
actual change in variance, averaged over the simulated trials, for the SearchTrack,
ReachTouch, and BimanualTouch affordance models.

126

0 10 20 30 40 50 60 70 80 90 100
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Red Ball Catalog

actions

re
w

ar
d

reward

(a) (b)

0 10 20 30 40 50 60 70 80 90 100
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
Red Ball Catalog (Simulated Over 25 trials)

actions

re
w

ar
d

reward

(c)

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Red Ball Catalog Model Delta Var (Simulated Over 25 trials)

actions

de
lta

 v
ar

ia
nc

e

SearchTrack
ReachTouch
HandTransfer
VisualInspect(yellow)
VisualInspect(blue)

(d)

Figure 6.4. These figures show the results of exploring the affordance catalog for
the red ball placed on the table in front of Dexter. Plot (a) shows the reward received
after each action for the real robot trial, while plot (b) shows the number of times
each action was taken during this trial. Plot (c) shows the average reward for the
simulated trials, more clearly showing the overall habituation. Plot (d) shows the
actual change in variance averaged over the simulated trials for the affordance models
built by employing the SearchTrack, ReachTouch, BimanualTouch and two
VisualInspect behavior.

127

affordance models averaged over the 25 simulated trials as actions are taken. It shows

that it took fewer actions to habituate on the SearchTrack model (about 20) than

on the ReachTouch model (about 50-60).

Figure 6.3 shows the results of exploring the affordances of the small orange bas-

ketball. Figure 6.3(a) shows the reward received after each action was taken during

the real robot trial. We see large spikes early in the trial, but the reward levels out to

approximately 0 after about 40 actions with only occasional small spikes thereafter.

Figure 6.3(b) shows the number of times each of the actions in A2 were selected dur-

ing the trial. This figure shows that SearchTrack was deterministic in its success,

but ReachTouch occasionally failed (about 10% of the time). This occurred when

the robot accidently knocked the ball off the table or the ball was placed out of the

robot’s reach. Unlike the table, however, the basketball afforded a number of reward-

ing BimanualTouch interactions (succeeding about 75% of the time). The robot

would fail on this action if it accidently knocked the ball off the table or dropped it

before the second Touch controller could converge. The basketball, like the table,

however, had no additional features Track-able via the VisualInspect schema.

Figures 6.3(c) and 6.3(d) show the results of the 25 simulated trials in which

samples were generated according to the models acquired in the real robot trial. As

with the table, we see the clear overall habituation in the average reward plot, as well

as the habituation for the three affordance models in the delta-variance plot.

Figure 6.4 shows results of exploring the affordances of the red ball. The reward re-

ceived after each action was taken during the real robot trial is shown in Figure 6.4(a).

Figure 6.4(b) shows the number of times each of the actions in A3 were selected during

this trial. Unlike the table and basketball demonstrations, the red ball provides two

additional Track-able affordances via the VisualInspect schema, corresponding

to the colored patches on its surface. Because these colors only appeared when the

robot grabbed the object in particular orientation, these features do not deterministi-

128

Figure 6.5. Iconic representations of the three catalogs Dexter learned for the table,
the red ball, and the small basketball. Each affordance associated with the catalog is
shown stacked in orange.

cally appear. In fact, Figure 6.4(b) shows that both additional features led to reward

less than half of the time that Visualnspect was invoked. Figures 6.4(c) and 6.4(d)

show the results for the corresponding simulated experiment.

The above demonstrations show how Dexter can sample purely visual features in

its environment and build affordance-based catalog models with respect to those fea-

tures and its behavioral capabilities. The robot can explore each of these affordances

until it gains some confidence in its internal cognitive models. Figure 6.5 shows an

iconic representation of the robot’s three catalog models at the end of the robot’s ex-

ploration stages. The affordances are represented in layers of capabilities associated

together into primitive “catagories” that the robot can use to interpret its world. We

also see, as in the case of the red ball, that multiple procedural instantiations of a

129

program—here the VisualInspect behavior—can be associated in the same catalog

because they orient the robot to uncovering a variety of related affordances (e.g.,

Track-ability). In the next chapter, we will examine how multi-object affordances

can be added to these catalog models relating, for example, the orange ball to the

table through a “placeable” affordance. Before we move on, however, we present a

second methodology for estimating affordance models in which their dynamics are

represented explicitly in a state description that can be explored using reinforcement

learning and the reward function presented in Equation 6.2.

6.3 Model Exploration Programs

We now define a class of MDPs called model exploration programs. These MDPs

have action set A. State is evaluated as an |A|-dimensional vector that captures

the confidence of each of the actions’ corresponding affordance model. Reward is

evaluated according to Equation 6.2. The status of each affordance model is defined

by a 4-valued predicate as follows:

p(Σ̇i) =



X : Pr(f |reward, ai) is unknown

− : Pr(f |reward, ai) has undefined features f

0 : |Σ̇i| > εm

1 : |Σ̇i| ≤ εm,

(6.6)

where εm is a small, positive constant, Σi is the variance of model Pr(f |reward, ai),

and Σ̇i is its rate of change in model variance as experience is gathered.

Before the robot has experience with action ai, its affordance model will be un-

known, and p(Σ̇i) = “X”. If the environment does not afford a behavior at a given

time the corresponding predicate value will be undefined, and p(Σ̇i) = “−”. This

occurs when the relevant input signals to the action are not present, and the dynamic

status of the behavior can not be evaluated. In all other cases, the predicate value

130

for an action is either 0 or 1 depending on the quiescence of the affordance model. It

is worth noting the similarity of this state representation to the state representation

in control basis programs; one captures the dynamics of a robot’s actions, the other

captures the changing properties of its internal knowledge structures. These cognitive

models, however, are based entirely on experience and are not guaranteed to converge

as asymptotically stable navigation functions do. Nevertheless, estimating the qui-

escence of affordance models provide a useful tool for describing the “state” of the

robot’s knowledge structures that can bias the robot’s exploratory actions to areas of

its world that it is uncertain about.

6.3.1 Demonstration: Exploring Affordance Models

To provide a demonstration of how model exploration programs may be used in

practice, we present three simple examples in which Dexter engages objects in its

workspace. Because it is our goal in this section to examine the performance of

model exploration programs, small state/action spaces are provided for each program

by the programmer a priori.

In each of the following three demonstrations, the robot uses a model exploration

program to guide its behavior in estimating multi-dimensional Gaussian affordances

models for each of the program’s actions. For each demonstration, a single trial was

performed on Dexter, and twenty-four additional trials (for a total of twenty-five)

were performed using the robot simulator. The simulation experiments used the

probabilistic models learned in the real trial (the likelihood of success for each action

given the observed context, and the estimated affordance model for each action)

to generate realistic samples. The empirical results presented are averaged over all

twenty-five trials. This approach was taken to provide a reasonable approximation of

what the average of many real robot trials would look like.

131

6.3.1.1 Experimental Setup

In all three experiments, a model exploration program is instantiated and ex-

plored using Q-learning with ε-greedy exploration (ε = 0.05) and an action penalty

of ρ = 0.05. A small exploration constant was chosen to inject some stochasticity

into the action selection process even though exploration arises naturally from the

non-stationary aspects of the habituation metric. At the beginning of each trial, the

robot has no experience and thus the state of its models are unknown (“X”). As the

robot performs actions it receives reward by reducing the change in variance of the

corresponding affordance models. The action becomes unrewarding when the change

of the variance drops below εm = 0.1 between successive executions (i.e., the model

quiesces). Each model is updated after the execution of the corresponding action if

reward from the affordance discovery motivator is received. The models are not up-

dated when the action does not succeed, accumulating no reward from the affordance

discovery motivator, only cost. Performance is analyzed over 25 trials (1 real, 24 sim-

ulated) of 100 actions each. The change in variance after each action was normalized

to the maximum value observed during each trial across all affordance models in the

program. We describe each of the three experiments next.

Dexter’s Table: In the first example, Dexter’s first catalog object—the green ta-

ble illustrated in Figure 3.2—is placed in the robot’s workspace. The robot explores

the table affordances and the NoOp action, such that A1 = {NoOp, Search-

Track(green), ReachTouch(green)} and creates a model exploration program

that assess these affordances.

Three Moving Objects: In the second example, three different colored objects

(a red, a yellow, and a blue ball) are placed on the green table in front of the

robot. The robot samples the set of possible new Touch affordances that can

be parameterized by the colors of these objects to build a model exploration pro-

gram with action set A2 = {NoOp, ReachTouch(red), ReachTouch(yellow),

132

ReachTouch(blue)} and corresponding state space. During the trial, the objects

are placed in random locations on the table. After each action, the positions of the

red, yellow, and blue balls on the table are moved to locations that differ from their

original position with (approximate) variances of 0.01 m, 0.05 m, and 0.25 m, respec-

tively. We hypothesize that the robot will explore each object in proportion to the

variance—it will engage the blue object more than the yellow or red object, and the

yellow object more than the red.

Novel & Surprising Objects: In the third example, a two-predicate model explo-

ration program is instantiated in which Dexter explores the action set A3 = {NoOp,

ReachTouch(red), ReachTouch(blue)} and their corresponding affordances.

For the first 25 actions, a red ball is placed in locations on the table. After these

actions, a blue ball is placed on the table. After 25 additional actions are taken, the

position of the red ball is moved to a different location on the table 25 centimeters

from its original location. In this example, we hypothesize two results: 1) Dexter will

engage the novel blue object after it has habituated the affordances of the red object

because it will produce more reward, and 2) Dexter will exhibit a form of “surprise”

by re-engaging the habituated red object when it observes variations in its estimated

model.

6.3.1.2 Results

Figure 6.6 shows the performance of the model exploration program for the table

experiment. We see in Figure 6.6(a) the reward received after each action is taken

(averaged over the 25 trials). This figure shows that after 20-30 actions, the robot

receives negligible reward for taking either of these two actions. Figure 6.6(b) shows

the change in variance for each of the affordance models in the schema. We can

clearly see the switch that occurs after about five or six actions when the change in

133

0 10 20 30 40 50 60 70 80 90 100
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Table Habituation (avg. 25 trials)

actions

re
w

ar
d

reward

(a)

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Table Model Delta Variance (avg. 25 trials)

actions

de
lta

 v
ar

ia
nc

e

SearchTrack Model
ReachTouch Model

(b)

Figure 6.6. Plot (a) shows the reward (averaged over all 25 trials—real and sim-
ulated) received after each action for the model exploration program that tracks
and touches the green table. Reward becomes negligible after 20-30 actions. Plot
(b) shows the change in model variance for the two affordance models used in the
schema.

variance of the Touch affordance model starts to outweigh the habituating Track

affordance model.

Figure 6.7 shows the performance of the model exploration program for the three

moving objects experiment. In these experiments, it takes the robot about 30-40

actions to habituate on its three affordance models, as seen in Figure 6.7(b). As

expected, we see in Figure 6.7(c) that it takes each of the three models an amount

of time to quiesce that grows with the variance in which the balls are placed. Fig-

ure 6.7(d) shows the average number of actions taken to explore each of the colored

objects before model quiescence, averaged over the 25 trials. It clearly shows that

it takes increasingly more actions to quiesce on objects with more variable locales.

On average about 7 actions are taken before the robot habituates on the red object,

about 18 for the yellow object, and about 27 for the blue object.

134

The final experiment shows that model exploration programs also yield behavior

that is typically described as reacting to “novelty” and “surprise.” Figure 6.8 shows

the reward and variance plots for this experiment. The robot quickly habituates to

the red object and attends to the novel blue object when it appears after 25 actions.

Exploration directed at this affordance habituates after about 25 more actions. Also,

when the position of red object changes, it surprises the robot, temporarily creating

more uncertainty in the affordances for ReachTouch(red), causing the robot to

re-engage that object, and to receive reward until it habituates once again.

6.4 Discussion

In this chapter, we demonstrated how the control basis framework supports in-

trinsically motivated affordance modeling. As a robot builds grounded behavioral

programs according to the affordance discovery motivator, it can explore the environ-

mental conditions under which these behaviors succeed. We provided three demon-

strations in which Dexter explored affordance catalogs until it was confident in its

internal models. These catalogs provide a categorical means by which a robot can

interpret its environment entirely in terms of its ability to interact with it. We also

provided three demonstrations in which a robot explored programs that utilize a state

representation capturing the dynamic state of its internal models. Both exploration

methodologies utilize the same reward function to assign credit to an estimate of the

robot’s confidence.

Although the empirical demonstrations in this chapter were performed in simple

contexts with simple objects, we expect the methodology to apply in more sophisti-

cated situations as well. In the next chapter, Dexter undergoes an additional learning

stage in which it acquires a PickAndPlace behavior. This behavior provides a new

means for the robot to interpret features it encounters and, as we will demonstrate,

can ground multi-object affordances such as “stackability” and “insertability.”

135

(a)

0 10 20 30 40 50 60 70 80 90 100
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Three Ball Object Habituation (avg. 25 trials)

actions

re
w

ar
d

reward

(b)

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Three Ball Model Delta Variance (avg. 25 trials)

actions

de
lta

 v
ar

ia
nc

e

ReachTouch(red)
ReachTouch(yellow)
ReachTouch(blue)

(c)

red yellow blue
0

5

10

15

20

25

30
Three Ball Action Choices (avg. 25 trials)

ReachTouch Object

Nu
m

be
r T

im
es

 C
ho

se
n

(d)

Figure 6.7. Frame (a) shows a screenshot of the simulation environment for the
three ball example. Plot (b) shows the reward (averaged over all 25 trials—real and
simulated) received after each action for the model exploration program that reaches
out and grabs the three colored balls. Plot (c) shows the change in model variance
for the three affordances used in the program. The chart in (d) shows the number of
times each action is taken before the corresponding affordances quiesce.

136

0 10 20 30 40 50 60 70 80 90 100
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Novelty\Surprise Reward (avg. 25 trials)

actions

re
w

ar
d

reward

(a)

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Novelty\Surprise Delta Variance (avg. 25 trials)

actions

de
lta

 v
ar

ia
nc

e

ReachTouch(red)
ReachTouch(blue)

(b)

Figure 6.8. Plot (a) shows the reward (averaged over all 25 trials—real and sim-
ulated) received after each action for the model exploration program for the third
experiment in which the second object only becomes available after 25 actions, and
the first object changes location after 50 actions. Plot (b) shows the change in model
variance for the two affordance models used in the schema.

137

CHAPTER 7

MULTI-BODY RELATIONSHIPS

Up to this point, we have examined how a robot can acquire behavioral knowl-

edge by engaging combinations of hierarchical control circuits. This framework was

demonstrated in applications where a robot developed skills with which to visually

search for objects that it could then touch, grab, transfer between its hands, and

inspect more closely. This chapter proposes a process by which a robot can interact

with and manipulate multiple objects in a controlled manner. We will first examine

how a robot can bring two objects into contact with each other, and then discuss

how it can explore the visual- and force-domain affordances that arise when it does.

During this exploration, the robot can apply all of its prior behavioral knowledge—

learned over the course of its development—to ground new categorical descriptions

using the techniques introduced in the last chapter. We conclude with a discussion of

how this approach results in models of simple two-body relations that can form the

basis of a variety of further intrinsically motivated exploratory behavior.

The ability of a robot to bring two objects into contact with each other in a con-

trolled manner has been studied extensively in the literature. Typical approaches

divide the task into pieces that can be planned independently with constraints de-

signed to meet global objectives (Lozano-Pérez, 1981; Brooks, 1983; Lozano-Pérez

et al., 1989). These systems are difficult to employ because they require highly cal-

ibrated devices and fully observable environments. Furthermore, these approaches

formulate the task as a search problem that has little to do with the robot’s prior

experience in similar tasks.

138

7.1 PickAndPlace

In this section, we discuss a developmental stage that was constructed for Dexter

to acquire and generalize a skill called PickAndPlace. This skill provides a prin-

cipled means of bringing the features of one catalog into contact with the features of

another and affords the opportunity to model how pairs of catalogs create controllable

visual- and force-domain relationships that are associated with stable multi-body re-

lationships. Through a process of accommodation and assimilation, Dexter acquires

this behavior in a simple training context and then generalizes it to new situations

that require more sophisticated strategies for force-domain interactions.

7.1.1 Declarative Structure

During the accommodation stage of learning PickAndPlace, we designate a

small state/action space that leverages existing knowledge efficiently and provides a

simple new learning context to make the desired declarative structure conspicuous.

To do this, we provide control basis actions to the robot to construct a new three-

predicate state space. The first predicate describes the status of the ReachTouch

program that, as we have seen, finds, reaches to, and grabs some simple objects. We

will use a ReachTouch referenced exclusively to headings toward highly-saturated

regions on the camera’s image plane (as in the previous declarative learning episodes).

ReachTouch incorporates common sense procedural knowledge regarding handed-

ness (as presented in Chapter 5).

The other two predicates provide the dynamic state of the following two con-

trollers:

Transport moves the position of an object held in Dexter’s right hand, xobj ∈ R3,

to a goal location, xg, by following the gradient of a harmonic potential field, −∇φh.

This path avoids collisions with other features detectable in Ωσ. The goal is defined by

139

the Cartesian centroid of a particular hue, saturation, or intensity pixel region present

in the visual feedback from both of Dexter’s camera images. In the training context,

a possible reference for this goal is defined by the centroid location of the green

hue-channel, xhue,3, corresponding to the experimental table (the rest of the table is

designated as an obstacle). Because harmonic functions are not navigation functions

(they are not admissible) their gradient can not be used directly as a control signal.

Instead, we compute a small relative displacement in the direction of the gradient

that is used as a bounded-input signal to the virtual spring potential function, φs,

with a 0 reference. This displacement is proportional to the value of the harmonic

potential and is defined as:

∆x , − ∇φh
||∇φh||

φh. (7.1)

This simple strategy yields reasonable performance in a variety of situations. ∆x

is bounded in the range [0, 1] and will decrease as the robot reaches the goal. The

Transport controller moves to minimize this relative displacement by providing

commands to the robot’s right arm. It is defined as:

Transport , c(φs, (∆x,0),θr,arm), (7.2)

resulting in joint displacements for the right arm such that

∆θr,arm = −
(
∂φs(0,∆x)

∂θr,arm

)#

φs(0,∆x) (7.3)

=
(
∆xTJr,arm

)#(1

2
∆xT∆x

)
(7.4)

=
1

2

(
J#
r,arm∆x

)
, (7.5)

where Jr,arm is the manipulator position Jacobian for the right arm. Transport

provides a control input based on feedback signals derived from stereo triangulation

140

equations and a harmonic path-plan, not direct feedback signals in Ωσ(env), and is

thus not rewarding by the affordance discovery motivator. Because this controller is

designed to transport an object that a robot holds in its hand, we will designate it

as “undefined” if no object is held.

Place is designed to detect and control a reaction force of 2N in the opposite direc-

tion of gravity (i.e., in the positive z world frame direction) between a grasped object

and another object. Place creates a virtual spring in the force domain to control the

net force felt the three fingertip load cells of the robot’s right hand, fr,net. To reduce

the error ε= (fref − fr,net), Place moves the joint angles of the robot’s right arm:

Place , c(φs, (fref , fr,net),xr,arm). (7.6)

Place computes control outputs, such that

∆xr,arm = −
(
∂φs(fref , fr,net)

∂xr,arm

)#

φs(fref , fr,net) (7.7)

= −
(
∂φs(fref , fnet)

∂fnet

∂fnet
∂xr,arm

)#(
1

2
(fref − fnet)

T (fref − fnet)

)
(7.8)

=

(
εT

∂fnet
∂xr,arm

)#(
1

2
εTε

)
=

1

2
ε. (7.9)

Because this control action uses the feedback signal fr,net ∈ Ωσ(env), it is rewarding by

the affordance discovery motivator. Place can easily be re-parameterized to apply

to Dexter’s left- and two-handed situations.

To accommodate PickAndPlace, consider the action setApp = {ReachTouch,

Transport, Place, Transport/Place, Place/Transport} and the state set

Spp where state vectors s ∈ Spp are defined as s = (prt ptransport pplace) and prt is the

state of the entire ReachTouch program.

141

(a) (b)

(c) (d)

Figure 7.1. The sequence of actions Dexter learned to accomplish the PickAnd-
Place task. The robot begins by (a) finding a highly-saturated hue in the video
stream, (b) reaching to it and performing a multi-fingered ReachTouch, (c) trans-
porting it to the location of the green hue feature (the table), and (d), detecting the
resulting reference load when the object comes into contact with the table.

During the accommodation stage, Dexter explores this state and action space

using the Accommodate() procedure to find rewarding affordances—in this case,

when the environment affords quiescence in the Place controller. Ten trials of 30

learning episodes were performed on the robot. During these learning episodes, the

experimenter presents objects with highly-saturated visual hues on the right side of

Dexter’s table, as seen in Figure 7.1(a).

142

Figure 7.2. The declarative PickAndPlace transitions under the policy learned
by Dexter after 30 training episodes. Transitions are shown if they occurred with a
probability greater than 20%. The robot begins by invoking the integrated Reach-
Touch behavior, accomplishing the “pick” part of the task, and then running the
composite action Transport / Place that brings the object into contact with the
goal, controlling the resulting reaction forces.

Figure 7.2 shows the resulting transition diagram for the policy learned after a

typical trial. After reaching to and grabbing the object (using ReachTouch), the

robot learned to transport it to a location on the table by means of the Transport

controller. The intrinsic reward is achieved when the reaction load from the sup-

porting surface is detected and controlled with Place. This sequence is illustrated

in Figures 7.1(b)-7.1(d). The average reward per time step for each episode (aver-

aged over the 10 trials) is shown in Figure 7.3. The average reward approaches 0.15

asymptotically.

7.1.2 Generalizing PickAndPlace

Although it was acquired using only the robot’s right arm and with green and

highly-saturated objects, the PickAndPlace program can be abstracted according

to the methods described in Chapter 5 to apply to different contexts. In fact, the

behavioral description of this skill is not complete until the robot also discovers how

to recognize when it works (i.e., when it successfully leads to reward) and when it

does not, and how the run-time situation influences how the abstract policy should be

143

Figure 7.3. This plot shows the average reward per state transition during the
accommodation phase of PickAndPlace. The results are averaged over 10 trials
of 30 learning episodes each. An ε-greedy exploration strategy was used in these
experiments with ε=0.2.

implemented. In a new learning stage, we therefore expanded the contexts in which

Dexter applied PickAndPlace by placing a ball with highly-saturated hues in un-

constrained initial locations on the table and by exploring more places to transport

it. During training, Dexter learned to assimilate these situations into its PickAnd-

Place schema. “Place” goals were visually designated by a blue-colored hue spot

that was placed in various locations on the table. In this expanded context, there are

situations in which the right-handed policy does not yield reward.

The robot uses the C4.5 decision tree learner (Chapter 5) to learn a procedural

policy according to the Assimilate() procedure over the joint signal space that arises

from the union of the “pick” and the “place” locations. This signal space is defined

as f pp = [xobj xgoal], where xobj is the Cartesian location of the “pick” goal and xgoal

is the Cartesian location of the “place” goal.

144

Figure 7.4. The average reward per state transition of the PickAndPlace behavior
over all 80 episodes (averaged over 10 trials).

Ten training trials of 40 episodes each were conducted on Dexter. The average

reward per state transition during these is episodes is plotted in Figure 7.4 (averaged

over the trials). This plot shows the average reward for the accommodation stage

(episodes 1-30) where the robot learned the declarative policy, with an additional 10

episodes in which exploration was turned off to reveal the greedy behavior according

to the policy pictured in Figure 7.2. Starting at episode 41, the procedural con-

text was challenged as described above, and the robot explored options to assimilate

PickAndPlace handedness preferences. We see that after an initial dip in perfor-

mance (episodes 41-60), the robot was able to re-gain the level of average reward per

time step it achieved in the simpler training context (episodes 31-40).

The resulting procedural policy is shown in Figure 7.5. This decision tree dis-

tinguishes cases when the object and the goal are sufficiently far away from each

other in the robot’s y- (lateral) direction. In this case, it should invoke Bimanual-

Touch in place of ReachTouch. Because both these schema reward the same type

145

Figure 7.5. The PickAndPlace procedural policy.

of affordance (Touch-ability), they both provide valid re-parameterizations of the

original declarative policy. In the current training context, the BimanualTouch

accomplishes a form of “hand-transfer” by picking up the object and bringing it into

contact with the robot’s other hand to achieve a grab. The resulting behavior in these

situations is illustrated in the sequence of images shown in Figures 7.6(a)-7.6(d). The

result is that the robot can accomplish a larger variety of PickAndPlace tasks by

leveraging a large amount of prior behavioral knowledge.

7.1.3 PickAndPlace Affordances

As a robot develops new behavioral structures such as PickAndPlace, it gains

additional means of interpreting feedback from the environment. In Section 6.2, Dex-

ter learned affordance catalogs for the green table and for two different balls it could

pick up and examine. Now that the robot is endowed with a new PickAndPlace

schema, a new affordance can be tested for membership in these catalog models. The

new PickAndPlace is inherently compelling to Dexter by the affordance discovery

reward because it relates objects and places and serves as the basis for a new (unhab-

146

(a) (b)

(c) (d)

Figure 7.6. A procedural adaptation for the PickAndPlace schema. In (a) we
see that the (blue-colored) goal is placed far to the robot’s left, while the object is
on its right. (b) and (c) show the robot using BimanualTouch for picking up the
object and passing it between its hands, so that it can be brought to this far-away
goal location as seen in (d).

147

ituated) categorical distinction in the world; it potentially influences every existing

catalog that the robot has so far constructed. Furthermore, since “pick” catalogs and

“place” catalogs refer to two distinct environmental entities, this affordance can be

viewed as belonging to a hierarchical “meta-catalog” that affords PickAndPlace

between two participating catalogs.

Let us examine how the PickAndPlace affordance can be added to the catalog

of a “pick” goal. Determining whether a new affordance can be added to a catalog is

trivial. The robot adds the candidate action, ai, to the action set explored using the

n-armed banded learning formulation discussed in Section 6.2.1, with Q0(ai) = 0. The

augmented action set is then explored using the ExploreCatalog() procedure. If

all other affordances in the catalog have habituated then the robot’s attention will be

re-engaged, focusing on this new action. To demonstrate this process, the PickAnd-

Place action is added to each of the three catalogs in Figure 6.5. The robot samples

its feedback signals for a “place” goal at run-time, adding the corresponding affor-

dance to the catalog if it results in reward from the affordance discovery motivator.

We now present the results of adding PickAndPlace to the three catalogs Dexter

acquired in Section 6.2.2. As in the initial demonstration, we performed one trial on

the real robot, then used the resulting probabilistic models to run an additional 25

trials in simulation. Each trial contained 50 action executions.

Figure 7.7 shows the reward received for each action as the robot explores the table

catalog. Figures 7.7(a) and 7.7(b) show the results for the 150 actions performed on

the real robot. The first 100 actions show the habituation for the initial affordances

before PickAndPlace is added. The next 50 actions show the results after the

new PickAndPlace action was added to the action set. We see that no additional

reward was achieved when this action was added because it never succeeded (as seen

in Figure 7.7(b)). The robot cannot pick up the table nor can it place it at another

locaton. One interesting artifact worth noting is the temporary small dip in average

148

reward shown in Figure 7.7(c) that occurs when the new PickAndPlace action is

added to the action set. At this point, the cost of exploring PickAndPlace (to no

avail) causes a penalty every time it is invoked. As there is no new information gained

from its execution, the robot must learn that it is not worth the cost. As it does, the

robot regains the same level of performance (0 average reward) as from before the

new behavior was added.

Unlike the table catalog, the small basketball and the red ball both do afford

PickAndPlace in some situations. When this new behavior was added to its action

set, the robot sampled available Place parameterizations to build new affordances

to add to each objects’ catalogs. Figure 7.8 shows how the robot explores this new

PickAndPlace behavior, placing the orange basketball on the green table. In

Figure 7.8(a), we see the reward per action for the real robot trial. The first 100

actions show the habituation for the initial affordances before PickAndPlace is

added. When this new action is introduced at action 101, the robot is rewarded for

exploring this new affordance and extending its catalog. We see in Figure 7.8(b), that

of the 22 times the robot performed this action it succeeded about 90% of the time

and received reward from the affordance discovery motivator. The rest of the time,

the robot dropped the object before the Place action could succeed. Figure 7.8(c)

shows the average reward for the simulated trials, more clearly demonstrating how

the PickAndPlace affordance habituates during the 50 additional actions taken by

the robot.

Similar results for when the PickAndPlace action was added to the red ball

catalog are shown in Figure 7.9. The graphs show the results for both the real trial

and the 25 simulated trials using models learned on the robot. As with the basketball,

the robot was able to complete this action using the spatial location of the green table

as the Place goal.

149

0 50 100 150
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Table Catalog Reward

actions

re
w

ar
d

reward

(a) (b)

0 50 100 150
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
Table Catalog Reward (Simulated Over 25 Trials)

actions

re
w

ar
d

reward

(c)

Figure 7.7. Exploring the PickAndPlace behavior in the table catalog. Frame
(a) shows the reward per action over a sequence of 150 actions for a single trial
on Dexter. The first 100 actions show the reward for constructing the catalog be-
fore PickAndPlace is added. The next 50 actions show the results after the new
PickAndPlace action is added to the action set. Frame (b) shows the number of
times each action was taken during the trial—blue parts bars indicate the number
of times the behavior received reward from the affordance discovery motivator, green
bars indicate that no reward was received. PickAndPlace did not achieve reward
for the table. Frame (c) shows the average reward per action for the 25 simulated
trials of the same experimental setup

150

0 50 100 150
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Basketball Catalog Reward

actions

re
w

ar
d

reward

(a) (b)

0 50 100 150
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
Basketball Catalog Reward (Simulated Over 25 Trials)

actions

re
w

ar
d

reward

(c)

Figure 7.8. The results of adding PickAndPlace to the catalog for the small
orange basketball. Frame (a) shows the reward per action over the total 150 actions
engaging the basketball on the real robot. The PickAndPlace action was intro-
duced after the first 100 actions. Frame (b) shows the number of times each action
was taken, and the proportion of the actions that received reward from the affor-
dance discovery motivator. PickAndPlace resulted in reward about 90% of the
time. Frame (c) shows the average reward for the 25 simulated trials.

151

0 50 100 150
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Red Ball Catalog

actions

re
w

ar
d

reward

(a) (b)

0 50 100 150
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
Red Ball Catalog (Simulated Over 25 trials)

actions

re
w

ar
d

reward

(c)

Figure 7.9. The results of adding PickAndPlace to the catalog describing the red
ball. Frame (a) shows the average reward per action over the total 150 actions en-
gaging the basketball on the real robot. The PickAndPlace action was introduced
after the first 100 actions. Frame (b) shows the number of times each action was
taken, and the proportion of times that action resulted in reward from the affordance
discovery motivator. PickAndPlace resulted in reward about 90% of the time.
Frame (c) shows the average reward for the 25 simulated trials.

152

Figure 7.10. An iconic view of two “meta-catalogs” created when catalogs are
brought into contact via PickAndPlace

By exploring PickAndPlace, Dexter discovered that the two balls reliably afford

being placed on the green table. The result is a basic understanding of how two

entities’ catalogs are related. Figure 7.10 shows an iconic representation of how

hierarchical “meta-catalogs” can be constructed when individual catalogs are brought

into contact with each other. In the remaining sections of this chapter, we will examine

how meta-catalogs provide a robot with the opportunity for long-term behavioral

exploration in both the visual- and the force-domains.

7.2 Affordances Describing Environmental Impedance

In the last section, it was demonstrated how visual features can form the inputs

to PickAndPlace actions to construct “meta-catalogs.” Although it should be

obvious that “placeability” has only a cursory relationship with the place goal being

green, these experiments provided an appropriate initial training context for Dexter to

153

bootstrap more advanced understanding during subsequent exploration. Affordances

of multi-object interactions are more robustly encoded in the reaction forces that

occur when the robot brings entities into contact with one another. In fact, tasks like

mechanical assembly are grounded in such force-domain affordances.

An appropriate characterization of multi-object interaction forces occurs through

an examination of environmental impedance. Impedance relates forces to velocities

in a system and can be used to represent mechanical assembly relations between

two objects. It is defined as the ratio between the force impeding an input spatial

displacement (or velocity). For a test i, an impedance Zi can be measured by applying

a displacement ∆xi and observing the reaction force fi such that:

Zi =
fi

∆xi
. (7.10)

In the control basis, environmental impedance provides useful feedback signals

when a robot is interacting with its environment. A robot can uncover impedances

by testing force tracking affordances in different directions, and observing the resulting

spatial displacements. By examining the impedances in certain directions for meta-

catalogs (object pairs), the robot can build the background knowledge for performing

characteristic assembly operations like stacking and inserting.

7.2.1 Experimental Setup for Impedance Observations

Experiments were performed in which Dexter explored the impedances of meta-

catalogs constructed when some of the objects seen in Figure 7.11 are brought into

contact with each other via PickAndPlace. Six object combinations were tested.

When contact was made between the objects, the robot sequentially ran 12 force-

tracking control actions, each one parameterized by a 2 N reference along each axis

of the robot’s coordinate frame or a 2 N/m about each axis of the that frame (3 axes,

2 directions along each axis, 2 directions about each axis). If the reference force was

154

(a) blue box (b) purple box (c) basketball (d) football

(e) yellow cylinder (f) blue cylinder (g) brown box (h) black box

Figure 7.11. Objects explored for impedance sensing.

tracked in either the positive or negative direction of each axis test, the affordance

was recorded in the corresponding meta-catalog. These six test dimensions are la-

beled {dPx, dPy, dPz, dRx, dRy, dRz}. A rought estimate of the impedance along

each direction was also recorded by dividing the net movement during the action by

the magnitude of the maximum force that was felt. In general, of course, the observed

impedances will depend on the relative coordinate frames of the two objects being

tested. The objects and object-relationships presented in this experiment, however,

are sufficiently simple and the process of coordinate frame alignment is ignored. De-

spite this limitation, however, interesting results are observed. Each experiment was

155

(a) (b)

Figure 7.12. Frame (a) shows the cylindrical relationship formed between the yellow
and blue cylinders. Frame (b) shows the prismatic relationship formed between the
brown and black boxes.

performed five times for each of the object pairs tested. The results were averaged

over these five trials.

7.2.2 Detected Impedances

The average likelihood of each force-tracking affordance along the six dimensions is

shown in Figure 7.13 for each of the six meta-catalogs tested. The average estimated

impedance for each direction of each meta-catalog is shown in Figure 7.14. These

estimates are normalized over each trial. We see that when the purple box is placed on

top of the blue box, the robot is able to track a reference force in the z-direction as well

as movements about the x- and y-directions every trial. This is to be expected because

the object from which these catalogs derive “fit” together by way of a plane-on-plane

relationship. In this case, lateral movements result in low impedance, but rotations

about those axes are relatively stiff and can be tracked in the force domain. Likewise,

rotation about the intersection contact normal produces low directional impedance,

but translation along the inward normal of the surface has high impedance. During

156

one of the trials, the robot was able to control the movement about the surface normal

by exploiting frictional forces. This was the case when the purple object was rotated

about the perceived contact normal on top of the blue object.

When the orange basketball was placed on top of the blue box, the robot was

reliably able to control the force maintaining contact between the objects (the z-

direction), as well as along the y-translational and x-rotational directions (resulting

in approximately the same movement), due to a strong frictional force in those di-

rections. The estimated impedance profile shows greater response in these three

directions. During one of the five trials, the robot was also able to control the strong

frictional force as it rotated the ball about the z-translational direction.

The meta-catalogs representing the purple box on the orange ball and the football

on the orange ball resulted in no reliable force-tracking affordances except in the z-

direction at the contact point. This is to be expected because, in both cases, the

top object either rotated about the ball or rolled the ball with it during the test

movement. The impedance profiles, likewise, also shows large magnitudes only along

this z-direction.

When the blue cylinder was placed inside the yellow cylinder (resulting in the

insertion relationship seen in Figure 7.12(a)), we expect to observe a cylindrical rela-

tionship to be formed in which forces in the lateral (x and y) directions and rotations

about those directions create resulting reactionary forces that can be controlled, while

movement along the z-direction and rotation about the same result in no such reac-

tionary forces. We see that, 80-100% of the time, this is in fact the result that was

observed by the robot both in the affordance likelihood and the estimated impedance

profiles.

157

F
ig

u
re

7
.1

3
.

T
h
e

av
er

ag
e

li
ke

li
h
o
o
d

of
th

e
fo

rc
e-

tr
ac

k
in

g
aff

or
d
an

ce
al

on
g

ea
ch

d
im

en
si

on
fo

r
th

e
si

x
m

et
a-

ca
ta

lo
gs

.

158

F
ig

u
re

7
.1

4
.

T
h
e

es
ti

m
at

ed
im

p
ed

an
ce

s
(a

ve
ra

ge
d

ov
er

fi
ve

tr
ia

ls
)

fo
r

th
e

si
x

m
et

a-
ca

ta
lo

gs
.

T
h
e

es
ti

m
at

es
ar

e
n
or

m
al

iz
ed

ac
co

rd
in

g
to

th
e

m
ax

im
u
m

es
ti

m
at

e
p

er
tr

ia
l.

159

Similarly, when the black box was placed inside the cardboard box (resulting in

the insertion relationship seen in Figure 7.12(b)), we expect to observe a prismatic

relationship to be formed in which forces in all directions can be controlled except

along the insertion (z) axis . The robot reliably observed this to be the case in all

five of its trials.

7.2.3 Discussion

The above experiments have provided the first steps toward examining how a robot

can explore the force-domain affordances between two objects when they are brought

into contact with each other into a meta-catalog. Predictable impedance relations,

such as those in Figure 7.13, can provide a means of identifying mechanical relation-

ships between objects and representing the categories of multi-object assemblies. The

demonstrations, however, were limited by their reliance on measuring impedances in

a fixed world coordinate frame. This limitation will make accurate assembly recog-

nition more challenging. In general, it will be necessary to consider how impedance

observations can be transformed into a unique 2-body coordinate frame that more

appropriately represents the relative force-domain invariants.

Despite this limitation, the pilot data presented in this section suggests that the

proposed techniques for affordance discovery can transform simple rules like “red

objects go on blue objects” through experience into assembly concepts in the force-

domain that describe how two objects “fit” together to create plane-on-plane, pris-

matic, cylindrical, revolute, or spherical surface relationships. One of these relation-

ships, the “plane-on-plane” relationship, provides a reasonable estimation of what

constitutes a “stack.” In the remainder of this chapter, we will explore how a devel-

oping robot can ground stacking relationships in both the visual- and the force-domain

affordance models that a robot can explored.

160

7.3 Meta-Catalog Exploration

It has been shown how meta-catalogs allow a robot to construct hierarchical cat-

alogs out of the multi-modal feedback signals it can control. The ability to create

catalogs autonomously through interaction yields a means of performing long-term

behavioral exploration and world modeling. When the intrinsic drive to discover new

affordances in meta-catalogs habituates, the robot can search for new features that

efficiently encode useful affordances for more complex entities. As a result, the robot

begins by exploring clusters of simple affordances and, with sufficient training, con-

structs hierarchies of multi-body catalogs. I contend that mechanisms like these can

be used to acquire expertise at recognizing and exploring experimental interactions

with the world and ultimately contribute to a deep understanding of manual skills.

To demonstrate, we use the techniques and behavior developed thus far to cre-

ate meta-catalogs from a recursive basis for catalog exploration. Experiments are

presented in which Dexter searches for new visual affordances that arise when it

constructs meta-catalogs via PickAndPlace. Visual affordances in meta-catalogs

occur when the robot tracks constellations of features sampled from the constituent

parts. Stable constellations are the visual associations of the force-domain invariants

that arise when two objects “fit” together in a mechanical assembly such as a “stack”

or an “insertion.”

7.3.1 Demonstration: Learning Visual Meta-Catalog Affordances

In this experiment, Dexter explores PickAndPlace actions to build meta-catalogs

and then searches for constellations of trackable features (via SearchTrack) with

which to “recognize” these relations. If the resulting constellations are stable after

the robot lets the object go (i.e., it does not immediately fall apart), the robot re-

ceives reward from the affordance discovery motivator for discovering a new Track

affordance.

161

(a) (b)

Figure 7.15. Frame (a) shows the feature descriptor for an oriented visual blob
invariant f . Frame (b) shows the descriptor for a feature constellation cf consisting
of two primitive feature descriptors fi and fj.

Although many representations for visual feature constellations exist, a simple

choice that is adequate for these experiments consists of a combination of two oriented

visual blob invariants and their relative scales. If we represent an anisotropic blob

(Figure 7.15(a)) as:

f = [u, v, du, dv, θ]

where (u, v) is the pixel coordinate of the center of the region of interest, du and dv

are the axes of the region, and θ is its orientation, then a compound feature can be

defined as:

cf =

[
dui
duj

,
dvi
dvj

, ψ

]
where (dui, dvi) and (duj, dvj) are the axes of the primitive features fi and fj, respec-

tively, and ψ is their relative orientation, as illustrated in Figure 7.15(b).

To demonstrate how Dexter can test for the affordances of visual constellations, we

provided a training context in which we place various combinations of the basketball,

the football, the small purple box, and the large blue box (Figure 7.11) on the table

in front of the robot. The robot tests all combinations of these objects except for

162

Stack Combination Success

Purple Box on Blue Box 100%
Basketball on Blue Box 20%
Football on Blue Box 80%
Basketball on Purple Box 0%
Basketball on Football 0%
Football on Purple Box 40%
Football on Basketball 0%

Table 7.1. 2-Way Stack Results

Stack Combination Success

Basketball on Purple Box on Blue Box 0%
Football on Purple Box on Blue Box 40%
Purple Box on Basketball on Blue Box 0%
Purple Box on Football on Blue Box 0%

Table 7.2. 3-Way Stack Results

combinations that require the robot to pick up the blue box (which it has difficulty

doing). Feature constellations are constructed from hue-space pixel regions corre-

sponding to the appearance of each of these objects on the robot’s left camera image.

The presence of Track-able visual constellations, in conjunction with characteristic

impedance profiles (as described in Section 7.2), induce a “stackable” category that

the robot can explore hierarchically. In particular, with this set of objects there are a

number of 2- and 3-way potential stacks the robot can test. To provide an empirical

analysis, each combination is tested five times.

7.3.2 Experimentally Determined Stackability Affordances

Table 7.1 shows the percentage of times each constellation is Track-able after

the completion of the PickAndPlace action. We see that the purple box and the

football stack reliably on top of the large blue box (100% and 80% of the time,

respectively), and created a stable Track-able visual constellation. Occasionally,

163

Figure 7.16. The growth of a 3-way stack consisting of the football on top of the
purple box on top of the blue box. This stack occurred successfully two out of the
five times it was built.

the basketball stays on top of the blue box (it rolled away four out of the five trials),

and for two of the trials, the football stacked on top of the purple box. The rest

of the two-way stacks did not succeed in any of the trials, and thus did not create

any Track-able constellations. We see in Table 7.2, only one 3-way stack occurred

in any of the trials, and only with a success rate of 40% (two out of the five trials).

This was the football on the purple box on the blue box. All other combinations did

not create a Track-able constellation that was stable after the robot removed its

hand. The stack construct gave rise to the resulting 3-way Track-able constellation

is illustrated in Figure 7.16.

Figure 7.17 shows the hierarchy of meta-catalogs and their respective affordances

for the blue box, purple box, and football. At the lowest level of this hierarchy, we see

the catalogs for the purple and blue boxes. The purple box affords receiving reward

by means of SearchTrack, ReachTouch, and BimanualTouch skills. The blue

box affords only SearchTrack and ReachTouch, because the robot was not able

to grab the object (it was two narrow and wide). These two catalogs induce a meta-

catalog via PickAndPlace that provides a visual constellation the robot can track

164

via SearchTrack This meta-catalog can also serve as a place goal for the football

to induce a second-tier meta-catalog capturing the three-way stack.

Figure 7.17 shows one “slice” of Dexter’s world model consisting of the set of

objects provided in the training contexts. It should be noted that other affordances

between these objects and other objects also exist (e.g., all of these objects also afford

PickAndPlace with the green table, among other things), but are not included in

this illustration for clarity.

7.4 Discussion

In this chapter, new learning stages were demonstrated on Dexter in which the

robot learned new affordances pertaining to the trackability of contact forces between

bodies and the visual appearance of multi-object interactions. The robot was able

to explore these affordances to learn new categorical distinctions revolving around a

very simple form of multi-object assembly—a “stack.” The robot explored a set of

objects, discovering which subsets created stable 2-and 3-way stacks, that in turn,

facilitate further behavioral exploration.

Affordances pertaining to multi-object assemblies are represented as knowledge

structures in the robot called “meta-catalogs.” These meta-catalogs capture both

spatial and force-domain characteristics of how bodies relate to one another and allow

a robot to construct new features it can explore (or “play” with) when the robot gets

bored with existing catalogs. Long-term learning thus becomes a recursive form of

catalog exploration in which the robot can continually find new ways to “interpret”

the world. Meta-catalogs bring together many of the techniques for intrinsically

motivated behavior learning and knowledge organization presented in this thesis.

165

Figure 7.17. The hierarchical affordance catalog created between the blue box, the
purple box, and the football. The figure shows the affordances of each object, as well
as the affordances of the constellation of features created when they are stacked on
top of each other through the PickAndPlace schema.

166

CHAPTER 8

CONCLUSIONS

In the first three chapters of this dissertation, I argued that manipulation was

an appropriate domain to study knowledge representation, organization, and intrin-

sic motivation in robot systems. I argued that a dynamical systems approach to

development provides a natural and biologically relevant means of representing ac-

tion, while also allowing a system to get the most out of its physical structure. In

the proposed framework, control circuits composed of sensorimotor resources and

domain general objectives are fluidly organized into dexterous strategies for interact-

ing with unmodelled worlds. In the next two chapters, I presented a developmental

approach for acquiring hierarchical programs in this framework, demonstrating its

efficacy through an extended example in which the robot Dexter learned strategies

for interacting with various objects. Under this approach, the robot is “taught” pro-

grams in simple learning situations that are later generalized to meet the demands of

more challenging contexts. Chapter 6 introduced how environmental affordances can

be collected into memory structures called “catalogs.” Chapter 7 demonstrated how

catalogs can ground multi-object assembly structures such as object “stacks,” while

also providing a basis for long-term behavioral exploration via “meta-catalogs.” In

this chapter, I will briefly discuss the main contributions of the document, examine

some possible future areas of related research, and provide some insights gained in

the course of this work.

167

8.1 Contributions

Ultimately, it will be very difficult for developers to program or demonstrate all

of the behavior a robot will need to behave competently in real-world scenarios.

Not only is it unlikely that a programmer will be able to foresee all of the possible

situations a robot might find itself in, it will be hard for developers to “get inside

the skin” of any robot with a different morphology or with sensory feedback signals

different from those of the programmer. Due to these challenges, it is imperative that

robot programmers instead endow robots with the ability to learn and adapt to new,

unforeseen situations autonomously and on the robot’s own terms.

In this thesis, I have argued for a developmental approach to robot programming

that requires minimal human developer input, and allows a robot to judge the efficacy

of its actions in terms of their run-time dynamics. Furthermore, I argue that any

robot designed to perform tasks in the natural environment must perform effectively

in both the spatial and the force domains. Most work in the community, however,

focuses primarily on learning behavior in the spatial domain. This is true, even

for work pertaining to primarily force-domain tasks such as grasping (Saxena et al.,

2007; Kraft et al., 2008; Goldfeder et al., 2009). Similarly, approaches for teaching

robots from demonstration have treated behavior not as “intentional” actions with

desirable effects, but rather as joint-level trajectories that can be generalized from

repeated examples (Schaal, 1999; Billard & Mataric, 2001; Jenkins & Mataric, 2002;

Schaal et al., 2003; Kober & Peters, 2009). These approaches, I argue, will not

result in dexterous solutions because they are designed to specifically ignore the most

important aspects of the tasks they are designed to solve.

In contrast, the work presented in this dissertation allows a robot to learn when

to appropriately and dexterously employ spatial and force domain feedback to find

controllable aspects of interaction in the world. The resulting knowledge learned

by this framework, as demonstrated by the experimental work on Dexter, is not

168

engineered for any specific task. In particular, this dissertation has made a number

of contributions to the state-of-the-art of specific areas in robot learning:

• Intrinsic Motivation: An intrinsic motivation function is presented that

drives the exploration of a robot to acquire robust hierarchical strategies for

manipulation by means of an inherent drive towards controllability. This “af-

fordance discovery” reward is unique in the intrinsic reward literature in that it

pushes the robot to interact with and model its environment, focusing on those

areas where it discovers stable, closed-loop interactions.

• Knowledge Representation: In the proposed framework, representation be-

gins at embodiment by providing a robot with the ability to connect its motor

units to its sensory channels to achieve goal-driven closed-loop behavior. Fur-

thermore, it was demonstrated how a number of prerogatives—or intentions—

native to the robot, but independent of any specific task, can be assembled into

goal-directed behavior that allows a robot to get the most out of its sensory and

motor systems.

• Knowledge Organization: Behavior is factored into declarative and procedu-

ral components that facilitate generalization, hierarchical re-use, and the ability

to find dexterous solutions to accomplish desired goals. Knowledge is organized

into hierarchical structures for both generalized behavior (schema) and object

modeling (catalogs). These structures provide an ontological means of capturing

what actions a robot can perform and how it can use those actions to interpret

its world.

• Multi-Object Assembly: Several experimental demonstrations were pre-

sented that illustrated a grounded approach to learning about the multi-object

relationships that form the basis for assembly. Assembly relationships were ac-

quired in terms of both visual and force domain affordances. These affordances

169

inform the creation of new compound structures (meta-catalogs) that a robot

can explore in a combinatoric way.

8.2 Future Directions

Although an extended demonstration was provided on the robot Dexter in a man-

ner to make certain points clear, the framework presented in this dissertation is much

more general and can be applied to any robot to address many domains of manipula-

tion. However, many related issues, some of which are described next, require more

investigation.

New Skills: Dexter was taught dexterous solutions to many manipulation tasks re-

garding single and multi-object tasks. What further skills might the robot learn?

One possibility could consider previous research by Coelho (2001) and Platt

(2006), in which these authors examined control basis approaches for achiev-

ing force-closure grasp conditions on objects. Interestingly, these formulations

meet the criteria to be rewarding by the affordance discovery motivator because

they move to regulate net forces and moments perceived on a robot’s fingertips.

How could a Grasp schema, then, be learned and employed to provide a more

robust solution for grabbing objects then the ReachTouch schema? What

additional schema could be learned on a bimanual robot such as Dexter? How

could the existing schema be generalized to handle more complex situations?

Can the PickAndPlace schema be generalized to allow a robot to perform

more general assembly tasks like Insert?

New Robots: How could the proposed techniques for developmental programming

be applied to different robots with different morphologies such as the uBot-5

mobile manipulator (Kuindersma et al., 2009). Mobile manipulators face an

increased amount of flexibility due to their ability to navigate around their

170

environments. They can seek out desirable contexts and provide an increased

ability to interact with both its world and other agents (such as humans or other

robots). For the uBot-5, areas for developmental learning include the ability to

learn and transition between modes of mobility (crawling, “knuckle-walking,”

balancing, etc.) that can be formulated as control tasks in the control basis.

How can such modes of navigation be learned in a manner similar to how an

infant learns to walk? Other questions include how behavior learned on one

robot may be transfered to other robots with slightly different morphologies.

Could the schema learned on Dexter be transferred to the uBot-5? Because

the declarative structure of schema represent abstract goals, it is interesting to

consider if transferring a schema to a new robot means only that it must learn

its own procedural policy while maintaining the original declarative structure.

Such an approach could bootstrap learning on the new robot to allow for new

behavior to be acquired more quickly.

Long-Term Training: In teaching the robot Dexter the sequence of hierarchical

programs demonstrated in this thesis, both the environmental contexts and

the available resources the robot could explore was strictly controlled by the

human teacher. This was done for two main reasons: (1) to show how having a

human “in-the-loop” can help a robot learn skills more quickly, and (2) because

leaving Dexter on and running for extended periods of time is infeasible for

practical reasons. However, the framework proposed supports a more “hands-

off” approach in which the robot can sample subsets of its resources to explore

more autonomously with less guidance. The discrete representation of resource

combinatorics in the control basis make this a feasible and tractable solution

for robots that can operate for more hours with less supervision. Would a robot

that was “always on” be able to learn a sequence of hierarchical skills by means

of the control basis and the affordance discovery reward function if given enough

171

time? What challenges would arise when less supervision is involved during each

stage of learning?

Additional Multi-Modal Features: The behavior taught to Dexter in the exper-

imental sections intentionally showed how to exploit very simple sensory features

to learn increasingly complex manipulation skills. However, could more robust

procedural strategies be acquired if the robot is allowed to use richer features

such as N -jets (Koenderink, 1984; Piater, 2001), SIFT-descriptors (Lowe, 2004),

or scale-space invariants (Lindeberg, 1994)? One immediate possible form of

improvement would be the investigation of such texture operators to find assem-

bly affordances. For example, corner detectors might be useful for classifying

which objects stack on other objects (horizontal surfaces with four co-planar

corners are a good indication). These operators, although typically applied to

visual images, could easily be applied to other domains as well (e.g., tactile,

auditory, etc.). How could these multi-modal texture operators enrich a robot’s

capabilities for manipulation?

Affordances used for Planning: The affordance catalogs presented in Chapters 6

and 7, provide a useful means of capturing how features might lead to desir-

able behavioral outcomes. Can these catalogs be used as forward models to

predict sequences of outcomes? In other words, can these catalogs provide the

inputs to higher-level planners that can be used to perform complex tasks such

as assembling mechanical structures? Recent work using Object Action Com-

plexes (OACs) for affordance modeling has suggested that this is possible (Uǧur

et al., 2009). This is worth investigating using the affordance models (catalogs)

presented in this document.

172

8.3 Insights and Discussion

This document provides a novel perspective with regards to programming robots

that are meant to operate in unstructured human environments. I advocate a frame-

work in which a robot can assemble its sensory and motor resources to achieve goals

that might be used to accomplish tasks if the circumstances are ripe. A number of

insights were gained in the course of examining the proposed framework:

• Situated representations for state, action, and reward—as presented in Chapters

3 and 4—provide an appealing substrate for a robot to learn strategies that can

be used in many tasks. This is a bottom up perspective that allows a robot

to see how it can use its resources to solve new tasks, rather than a top down

perspective in which a programmer fits a robot to a task that the robot may not

have been designed for. The “trick” in such approach is in providing a robot

with a number of task-independent objectives that have more to do with how

best it can use its body, and a number of resources it can use to accomplish

those objectives. I argue that such an approach will be absolutely necessary for

robots learning over the long-term because it will be impossible to foresee all of

the functions that a robot may need to perform during its extended “lifetime.”

• A large number of tasks can be accomplished in which the perceptual capabilities

of a robot are fundamentally and exclusively grounded in a robot’s ability to in-

teract with its environment. This idea underlies any control theoretic approach

to robot programming, but has been demonstrated here in increasing layers of

abstraction that allow a robot to achieve primitive levels of behavioral reason-

ing and planning (c.f., the learned procedural strategies for ReachTouch and

PickAndPlace). This approach also suggests that a robot will learn the most

compact representations for knowledge that it is able to, not trying to fit human

specified features into its model that might be unhelpful or misguided. If the

robot needs a particular feature to solve a task, it will recruit that feature in a

173

closed-loop strategy, and ignore all other features it has no use for (i.e., those

features that do not increase the likelihood of reward).

• The behavioral schema the robot Dexter learned were all compact because the

proposed representation allows a robot to use programs hierarchically. None

of the programs Dexter learned in its learning stages consisted of more than

two or three actions, and thus no state vector was ever larger than two or

three predicates long. Despite, such limitations, Dexter was able to learn effec-

tive strategies for a large amount of behavior, including primitive strategies for

multi-object assembly. This suggests that the proposed approach is reasonably

scalable, and will not lead to intractable state/action spaces as the complexity of

new learning problems increase. The complexity, in many ways, is pushed to the

procedural learning components that allow a robot to generalize its programs

into contingency-handling schema. However, procedural learning strategies can

be incremental, incorporating new features only if existing strategies are not

sufficient. I believe this is an attractive approach to handling complexity be-

cause it leads to simple strategies quickly, but allows for adaptive readjustment

over the long-term as the robot gains more experience.

• Adhering to formal typing constraints and uniform structures for assembling

actions and states out of a robot’s combinatorics makes it possible to write a

general software programming interface for the control basis we have called the

Control Basis API (CBAPI) (Hart et al., 2009). The CBAPI requires a pro-

grammer to supply only the interface (or driver) to a robot resource along with

a configuration file specifying device-specific parameters, and is given in return

the ability to use that resource in formal, type-constrained control policies. Fur-

thermore, such a formal specification allows machine learning algorithms, such

as Q-learning, to explore the combinatorics of control basis state/action spaces

174

according to the techniques for behavioral programming laid out in Chapters 4

and 5.

Taken together, the ideas presented in this dissertation provide some promising

new areas of research for programming robots meant to perform “life-long” learning in

unstructured, human environments. At their core, these ideas advocate an embodied,

self-motivated approach to learning robust, closed-loop behavior that a robot can

adapt to meet the demands of its world. I argue that the experiments presented herein

demonstrate a principled means of constructing directed behavior from undirected

means—something any next generation adaptive robot will have to consider as it

exceeds its factory-equipped capabilities to help humans in both everyday or highly-

specialized tasks.

175

BIBLIOGRAPHY

Akishita, S., Kawamura, S., & Hayashi, K. (1990). Laplace potential for moving
obstacle avoidance and approach for a mobile robot. 1990 Japan-USA Symposium
on Flexible Automation, A Pacific Rim Conference (pp. 139–142).

Angeles, J., & Lopez-Cajun, C. (1992). Kinematic isotropy and conditioning index
of serial robotic manipulators. The International Journal of Robotics Research, 11,
560–571.

Arbib, M. (2003). Schema theory. The Handbook of Brain Theory and Neural Com-
putation. Cambridge, MA: MIT Press.

Arkin, R. C. (1998). Behavior-based robotics. MIT Press.

Asada, H., & Granito, J. C. (1985). Kinematic and static characterization of wrist
joints and their optimal design. International IEEE Conference on Robotics and
Automation. St. Louis, MO.

Asada, M., MacDorman, K., Ishiguro, H., & Kuniyoshi, Y. (2001). Cognitive devel-
opmental robotics as a new paradigm for the design of humanoid robots. Robotics
and Autonomous Systems, 37, 185–193.

Asadi, M., Papudesi, V. N., & Huber, M. (2006). Learning skill and representa-
tion hierarchies for effective control knowledge transfer. ICML 2005 Workshop on
Structural Knowledge Transfer for Machine Learning. Pittsburgh, PA.

Ballard, D. (1991). Animate vision. Artificial Intelligence, 48, 57–86.

Barto, A., Singh, S., & Chentanez, N. (2004). Intrinsically motivated learning of
hierarchical collections of skills. Proceedings of the International Conference on
Development and Learning (ICDL). LaJolla, CA.

Bellman, R. (1961). Adaptive control processes: A guided tour. Princeton, NJ: Prince-
ton University Press.

Berlyne, D. E. (1960). Conflict, arousal, and curiosity. McGraw-Hill.

Berlyne, D. E. (1965). Structure and direction in thinking. New York, NY: John
Wiley and Sons, Inc.

Bernstein, N. (1996). On dexterity and its development. In M. Latash and M. Turvey
(Eds.), Dexterity and its development. Mahwah, N.J.: Laurence Erlbaum Associates
Inc.

176

Berthouze, L., Bakker, P., & Kuniyoshi, Y. (1996). Learning of oculo-motor control: A
prelude to robotic imitation. Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems.

Billard, A., & Mataric, M. (2001). Learning human arm movements by imitation:
Evaluation of a biologically inspired connectionist architecture. Robotics and Au-
tonomous Systems, 37, 145–160.

Braitenberg, V. (1984). Vehicles: Experiments in synthetic psychology. Cambridge,
MA: MIT Press.

Brooks, R. (1986). A robust layered control system for a mobile robot. IEEE Journal
of Robotics and Automation, 2, 14–23.

Brooks, R. (1991). Intelligence without representation. Artificial Intelligence, 47,
139–159.

Brooks, R. A. (1983). Planning collision free motions for pick and place operations.
Memo 725. MIT-AI Lab, MIT.

Burden, R., Faires, J., & Reynolds, A. (1972). Numerical analysis. Boston,MA:
Prindle, Weber and Schmidt.

Canny, J. (1988). The complexity of robot motion planning. Cambridge, MA: MIT
Press.

Chamero, A. (2003). An outline of a theory of affordances. Ecological Psychology, 15,
181–195.

Chiacchio, P. (2001). A new dynamic manipulability ellipsoid for redundant manip-
ulators. Robotica, 18, 381–387.

Chiacchio, P., S.Chiaverini, L.Sciavicco, & B.Siciliano (1992). Influence of gravity on
the manipulability ellipsoid for robot arms. Journal of Dynamic Systems, Measure-
ment, and Control, 114, 723–727.

Chiu, S. (1987). Control of redundant manipulators for task compatability. Interna-
tional IEEE Conference on Robotics and Automation. Raleigh, NC.

Coelho, J., & Grupen, R. (1997). A control basis for learning multifingered grasps.
Journal of Robotic Systems, 14, 545–557.

Coelho, J., Piater, J., & Grupen, R. (2000). Developing haptic and visual perceptual
categories for reaching and grasping with a humanoid robot. First IEEE-RAS
International Conference on Humanoid Robots. Cambridge, MA.

Coelho, J. A. (2001). Multifingered grasping: Grasp reflexes and control context. Doc-
toral dissertation, Department of Computer Science, University of Massachusetts
Amherst.

177

Cohen, P. R., Chang, Y., & Morrison, C. T. (2007). Learning and transferring ac-
tion schemas. Proceedings of the 2007 International Joint Conference on Artificial
Intelligence. Hyderabad, India.

Cohen, P. R., Oates, T., Adams, N., & Beal, C. (2001). Robot baby 2001. Invited
talk at the Twelfth International Conference on Algorithmic Learning Theory.

Cohn, D., Ghahramani, Z., & Jordan, M. (1996). Active learning with statistical
models. Journal of Artificial Intelligence Research, 4, 129–145.

Connolly, C., Burns, J., & Weiss, R. (1990). Path planning using laplace’s equation.
Proceedings of the IEEE Conference on Robotics and Automation (ICRA).

Connolly, C., & Grupen, R. (1994). Nonholonomic path planning using harmonic
functions (Technical Report 94-50). University of Massachusetts, Amherst.

Craig, J. (2004). Introduction to robotics: Mechanics and control. New Jersey: Pren-
tice Hall. 3rd edition.

Csikszentmihalyi, M. (1991). Flow: The psychology of optimal experience. New York,
NY: Harper Perennial.

Csikszentmihalyi, M. (1996). Creativity- flow and the psychology of discovery and
invention. New York, NY: Harper Perennial.

Davis, E. (1990). Representations of commonsense knowledge. San Mateo, CA: Mor-
gan Kaufmann.

Davis, R., Shrobe, H., & Szolovits, P. (1993). What is a knowledge representation?
AI Magazine, 14, 17–33.

Dayan, P., & Belleine, W. (2002). Reward, motivation and reinforcement learning.
Neuron, 36, 285–298.

Detry, R., Popovic, M., Touati, Y., Baseski, E., Krüger, N., & Piater, J. (2009). Au-
tonomous learning of object-specific grasp affordance densities. ICRA 2009 Work-
shop Approaches to Sensorimotor Learning on Humanoid Robots. Kobe, Japan.

Digney, B. (1998). Learning hierarchical control structure from multiple tasks and
changing environments. From Animals to Animats 5: Proceedings of the Fifth
International Conference on Simulation of Adaptive Behavior.

Doǧar, M. R., Çakmak, M., Uǧur, E., & Şahin, E. (2007). From primitive behaviors
to goal-directed behavior using affordances. Proceedings of the 2007 IEEE Interna-
tional Conference on Intelligent Robotics and Systems (IROS). San Diego, CA.

Drescher, G. (1991). Made-up minds: A constructionist approach to artificial intelli-
gence. Cambridge, MA: MIT Press.

178

Edsinger, A., & Kemp, C. C. (2006). What can i control? a framework for robot self-
discovery. Proceedings of the 6th International Workshop on Epigenetic Robotics.

Federov, V. (1972). Theory of optimal experiment. New York, N.Y.: Academic Press.

Festinger, L. (1957). A theory of cognitive dissonance. Evanston, Row, Peterson.

Fitzpatrick, P., Metta, G., Natale, L., Rao, S., & Sandini, G. (2003). Learning about
objects through action: Initial steps towards artificial cognition. IEEE International
Conference on Robotics and Automation. Taipei.

Gandolfo, F., Sandini, G., & Bizzi, E. (1996). A field-based approach to visuo-motor
coordination. Proceedings of Workshop on Sensorimotor Coordination: Amphib-
ians, Models, and Comparative Studies. Sedona, Arizona.

Geib, C., Mourão, K., Petrick, R., Pugeault, N., Steedman, M., Krüger, N., &
Wörgötter, F. (2006). Object action complexes as an interface for planning and
robot control. Workshop ‘Toward Cognitive Humanoid Robots’ at IEEE-RAS In-
ternational Conference on Humanoid Robots. Genoa, Italy.

Gibson, E. (2000). Perceptual learning in development: Some basic concepts. Eco-
logical Psychology, 12, 295–302.

Gibson, J. J. (1977). The theory of affordances. Perceiving, acting and knowing:
toward an ecological psychology (pp. 67–82). Hillsdale, NJ: Lawrence Erlbaum As-
sociates Publishers.

Gizster, F., Mussa-Ivaldi, F. A., & Bizzi, E. (1993). Convergent force fields organized
in the frogs spinal cord. The Journal of Neuroscience, 13, 467–491.

Goldfeder, C., , Ciocarlie, M., Dang, H., & Allen, P. (2009). The columbia
grasp database. Proceedings of the IEEE Conference on Robotics and Automation
(ICRA). Kobe, Japan.

Gomez, G. (2004). Simulating development in a real robot. Proceedings of the 4th
International Workshop on Epigenetic Robotics.

Grupen, R., & Souccar, K. (1993). Manipulability-based spatial isotropy: A kine-
matic reflex. Proceedings of the International Workshop on Mechatronical Computer
Systems for Perception and Action (pp. 157–163).

Hager, G., Hutchinson, S., & Corke, P. (1996). A tutorial on visual servo control.
Tuioriul TT3, IEEE International. Conference on Robotics and Automution. Min-
neapolis, MN.

Harlow, H. (1950). Learning and satiation of response in intrinsically motivated com-
plex puzzle performances by monkeys. Journal of Comparative and Psychological
Psychology, 43, 289–294.

179

Hart, S., & Grupen, R. (2007). Natural task decomposition with intrinsic potential
fields. Proceedings of the 2007 International Conference on Intelligent Robots and
Systems (IROS). San Diego, California.

Hart, S., Grupen, R., & Jensen, D. (2005). A relational representation for proce-
dural task knowledge. Proceedings of the 2005 American Association for Artificial
Intelligence (AAAI) Conference. Pittsburgh, Pennsylvania.

Hart, S., Sen, S., & Grupen, R. (2008a). Generalization and transfer in robot con-
trol. 8th International Conference on Epigenetic Robotics (Epirob08). University
of Sussex, Brighton, UK.

Hart, S., Sen, S., & Grupen, R. (2008b). Intrinsically motivated hierarchical ma-
nipulation. Proceedings of the 2008 IEEE Conference on Robots and Automation
(ICRA). Pasadena, California.

Hart, S., Sen, S., Ou, S., & Grupen, R. (2009). The control basis api - a layered
software architecture for autonomous robot learning. 2009 Workshop on Software
Development and Integration in Robotics (SDIR) at the IEEE Conference on Robots
and Automation (ICRA). Kobe, Japan.

Hayes, P. J. (1978). The naive physics manifesto. In D. Michie (Ed.), Expert systems
in the micro-electronic age. Edinburgh University Press.

Henderson, T., & Shilcrat, E. (1984). Logical sensor systems. Journal of Robotic
Systems, 1, 169–193.

Herrmann, J., Pawelzik, K., & Geisel, T. (2000). Learning predictive representations.
Neurocomputing, 32-33, 785–791.

Hobbs, J., & Moore, R. (Eds.). (1985). Formal theories of the commonsense world.
Noorwood, NJ: Ablex.

Horvitz, J. (2000). Mesolimbocortical and nigrostriatal dopamine responses to salient
non-reward events. Neuroscience, 96, 651–656.

Houk, J. C., Davis, J., & Beiser, D. (Eds.). (1995). A model of how the basal ganglia
generates and uses neural signals that predict reinforcement. Cambridge, MA: MIT
Press.

Huang, X., & Weng, J. (2002). Novelty and reinforcement learning in the value
system of developmental robots. Proceedings of the 2nd International Workshop on
Epigenetic Robotics: Modeling Cognitive Development in Robotic Systems.

Huber, M. (2000). A hybrid architecture for adaptive robot control. Doctoral disser-
tation, Department of Computer Science, University of Massachusetts Amherst.

Huber, M., & Grupen, R. (1996). A hybrid discrete dynamic systems approach to robot
control (Technical Report 96-43). Department of Computer Science, University of
Massachusetts Amherst.

180

Huber, M., & Grupen, R. (1997). Learning to coordinate controllers - reinforcement
learning on a control basis. Proceedings of the Fifteenth International Joint Con-
ference on Artificial Intelligence (IJCAI). Nagoya, JP: IJCAI.

Hull, C. (1943). Principles of behavior: An introduction to behavior theory. New
York, NY: Appleton-Century-Croft.

Hunt, H. (1965). Intrinsic motivation and its role in psychological development.
Nebraska Symposium on Motivation, 13, 189–282.

Jenkins, O., & Mataric, M. (2002). Deriving action and behavior primitives from
human motion data. International Conference on Intelligent Robots and Systems.

Johnson, M., & Lakoff, G. (1980). Metaphors we live by. Chicago, Illonois: University
of Chicago Press.

Kagan, J. (1972). Motives and development. Journal of Personality and Social
Psychology, 22, 51–66.

Kakade, S., & Dayan, P. (2002). Dopamine: Generalization and bonuses. Neural
Networks, 15, 549–559.

Kaplan, F., & Hafner, V. V. (2005). Mapping the space of skills: An approach
for comparing embodied sensorimotor organization. Proceedings of the 4th IEEE
International Conference on Development and Learning.

Kaplan, F., & Oudeyer, P. (2003). Motivational principles for visual know-how devel-
opment. Prodeedings of the 3rd International Conference on Epigenetic Robotics.
Edinburgh, Scotland.

Kavraki, L. E., Svesktka, P., Latombe, J. C., & Overmars, M. H. (1996). Proba-
bilistic roadmaps for path planning in high-dimensional configuration space. IEEE
Transactions on Robotics and Automation, 12, 566–580.

Kemp, C. C., & Edsinger, A. (2006). What can i control?: The development of visual
categories for a robots body and the world that it inuences. Proceedings of the 5th
IEEE International Conference on Development and Learning (ICDL-06), Special
Session on Autonomous Mental Development..

Khatib, O. (1986). Real-time obstacle avoidance for manipulators and mobile robots.
International Journal of Robotics Research, 5.

Kober, J., & Peters, J. (2009). Learning motor primitives for robotics. International
IEEE Conference on Robotics and Automation (ICRA). Kobe, Japan.

Koditschek, D., & Rimon, E. (1990). Robot navigation functions on manifolds with
boundary. Advances in Applied Mathematics, 11, 412–442.

Koenderink, J. (1984). The structure of images. Biological Cybernetics, 50, 363–370.

181

Konidaris, G., & Barto, A. (2007). Building portable options: Skill transfer in re-
inforcement learning. Proceedings of the Twentieth International Joint Conference
on Artificial Intelligence (pp. 895–900).

Kraft, D., Pugeault, N., Baseski, E., Popović, M., Kragic, D., Kalkan, S., Wörgötter,
F., & Krüger, N. (2008). Birth of the object: Detection of objectness and extraction
of shape through object action complexes. Proceedings of the 2008 International
Conference on Cognitive Systems. Karlsruhe, Germany.

Krogh, B. (1984). A generalized potential field approach to obstacle avoidance control.
Proceedings of the SME Conference on Robotics Research: The Next Five Years and
Beyond. Bethlehem, PA.

Krüger, N., Piater, J., Wörgötter, F., Geib, C., Petrick, R., Steedman, M., Ude, A.,
Asfour, T., Kraft, D., Omrcen, D., Hommel, B., Agostino, A., Kragic, D., Eklundh,
J., Kruger, V., & Dillmann, R. (2009). A formal definition of object action com-
plexes and examples at different levels of the process hierarchy. http://www.paco-
plus.org.

Kuindersma, S., Hannigan, E., Ruiken, D., & Grupen, R. (2009). Dexterous mo-
bility with the ubot-5 mobile manipulator. Proceedings of the 14th International
Conference on Advanced Robotics (ICAR). Munich, Germany.

Kuipers, B. (2000). The spatial semantic hierarchy. Artificial Intelligence, 191–233.

Kupiers, B., Beeson, P., Modayil, J., & Provost, J. (2005). Bootstrap learning of
foundational representations. Developmental Robotics, AAAI Spring Symposium
Series.

Latombe, J. (1991). Robot motion planning. Norwell, MA: Kluwer Academic Pub-
lishers.

LaValle, S. M. (1998). Rapidly-exploring random trees: A new tool for path planning.
(Technical Report 98-11). Computer Science Deptartment, Iowa State University.

Lee, M. H., & Meng, Q. (2005). Psychologically inspired sensory-motor development
in early robot learning. International Journal of Advanced Robotics Systems, 2,
325–333.

Lenat, D. (1995). CYC: A large-scale investment in knowledge infrastructure. Com-
munications of the ACM, 38, 33–38.

Lindeberg, T. (1994). Scale-space theory in computer vision. Dordrecht, Netherlands:
Kluwar Academic Publishers.

Littman, M. L., Sutton, R., & Singh, S. (2002). Predictive representations of state.
In Advances In Neural Information Processing Systems (NIPS) 14 (pp. 1555–1561).
MIT Press.

182

Lörken, C., & Hertzberg, J. (2008). Grounding planning operators by affordances.
Proceedings of the 2008 International Conference on Cognitive Systems. Karlsruhe,
Germany.

Lowe, D. (2004). Distinctive image features from scale-invariant keypoints. Interna-
tional Journal of Computer Vision, 60, 91–110.

Lozano-Pérez, T. (1981). Automatic planning of manipulation transfer movements.
IEEE Transactions on Systems, Man, and Cybernetics, 11, 681–698.

Lozano-Pérez, T., Jones, J. L., Mazer, E., & O’Donnell, P. A. (1989). Task-level
planning of pick-and-place robot motions. Computer, 22, 21–29.

Lungarella, M., Metta, G., Pfeifer, R., & Sandini, G. (2003). Developmental robotics:
A survey. Connection Science, 15, 151–190.

Marshall, J., Blank, D., & Meeden, L. (2004). An emergent framework for self-
motivation in developmental robotics. Proceedings of the 4th IEEE International
Conference on Development and Learning.

McGovern, A. (2002). Autonomous discovery of temporal abstractions from interac-
tion with an environmentt. Doctoral dissertation, Department of Computer Science,
University of Massachusetts Amherst.

Mehta, N., Natarajan, S., Tadepalli, P., & Fern, A. (2005). Transfer in variable-reward
hierarchical reinforcement learning. Workshop on Transfer Learning at Neural In-
formation Processing Systems. Cornvallis, Oregon.

Metta, G. (2000). Babybot: A study into sensorimotor development. Doctoral disser-
tation, LIRA-Lab (DIST).

Microsoft Co. (2008). Microsoft robotics developers studio.
http://msdn.microsoft.com/en-us/robotics/.

Minsky, M. (1974). A framework for representing knowledge. Memo 306. MIT-AI
Lab, MIT.

Modayil, J., & Kupiers, B. (2007). Autonomous development of a grounded object
ontology by a learning robot. Proceedings of the Twenty-Second Conference on
Artificial Intelligence (AAAI-07).

Montgomery, K. (1954). The role of exploratory drive in learning. Journal of Com-
parative and Psychological Psychology, 47, 60–64.

Muchisky, M., Gershkoff-Stowe, L., Cole, E., & Thelen, E. (1996). The epigenetic
landscape revisted: A dynamic interpretation. Advances in Infancy Research, 10,
121–159.

183

Mugan, J., & Kuipers, B. (2007). Learning distinctions and rules in a continuous world
through active exploration. 7th International Conference on Epigenetic Robotics
(Epirob07).

Mugan, J., & Kuipers, B. (2008). Towards the application of reinforcement learning
to undirected developmental learning. 8th International Conference on Epigenetic
Robotics (Epirob08).

Mussa-Ivaldi, F. A., & Bizzi, E. (2000). Motor learning through the combination of
primitives. Philosophical Transactions of the Royal Society of London, 355, 1755–
1769.

Mussa-Ivaldi, F. A., Gizster, F., & Bizzi, E. (1994). Linear combinations of primitives
in vertebrate motor control. Proceedings of the National Academy of the Sciences,
USA, 91, 7534–7538.

Nakamura, Y. (1991). Advanced robotics: Redundancy and optimization. Addison-
Wesley.

Natale, L. (2004). Linking action to perception in a humanoid robot: A developmental
approach to grasping. Doctoral dissertation, LIRA-Lab, DIST, University of Genoa.

Newell, A., & Simon, H. A. (1961). GPS: A program that simulates human thought.
In Lernende automaten. Munich, Oldenbourg KG: MIT Press.

Nilsson, N. (1994). Teleo-reactive programs for agent control. Journal of Artificial
Intelligence Research, 139–158.

Oates, T. (2001). Grounding knowledge in sensors: Unsupervised learning for lan-
guage and planning. Doctoral dissertation, University of Massachusetts Amherst.

Ostroff, J. S., & Wonham, W. M. (1985). A temporal logic approach to real time
control. 24th IEEE Conference on Decision and Control, 24, 656–657.

Oudeyer, P., & Kaplan, F. (2008). How can we define intrinsic motivation? 8th
International Conference on Epigenetic Robotics (Epirob08).

Oudeyer, P., Kaplan, F., & Hafner, V. V. (2007). Intrinsic motivation systems for
autonomous mental development. IEEE Transactions on Evolutionary Computing,
11, 265–286.

Oudeyer, P., Kaplan, F., Hafner, V. V., & Whyte, A. (2005). The playground exper-
iment: Task-independent development of a curious robot. Proceedings of the AAAI
Spring Symposium on Developmental Robotics.

Papudesi, V. N., & Huber, M. (2006). Learning behaviorally grounded state repre-
sentations for reinforcement learning agents. Prodeedings of the 6th International
Conference on Epigenetic Robotics. Paris, France.

184

Pfeifer, R. (2002). Robots as cognitive tools. International Journal of Cognition and
Technology, 1, 125–143.

Piaget, J. (1952). The origins of intelligence in childhood. International Universities
Press.

Piater, J. H. (2001). Visual feature learning. Doctoral dissertation, Department of
Computer Science, University of Massachusetts Amherst.

Piater, J. H., & Grupen, R. A. (2000). Constructive feature learning and the develop-
ment of visual expertise. Proceedings of the Seventeenth International Conference
on Machine Learning. Stanford, CA.

Platt, R. (2006). Learning and generalizing control based grasping and manipula-
tion skills. Doctoral dissertation, Department of Computer Science, University of
Massachusetts Amherst.

Platt, R., Fagg, A. H., & Grupen, R. (2002). Nullspace composition of control laws
for grasping. International Conference on Intelligent Robots and Systems (IROS).
Laussane, Switzerland: IEEE/RSJ.

Power, T. G. (2005). Play and exploration in children and animals. New Jersey:
Lawrence Erlbaum Associates.

Quinlan, J. (1993). C4.5: Programs for machine learning. San Mateo, CA.: Morgan
Kaufmann Publishers.

Ranjbaran, F., Angeles, J., & Kecskemethy, A. (1996). On the kinematic condi-
tioning of robotic manipulators. International IEEE Conference on Robotics and
Automation. Minneapolis, MN.

Ravindran, B. (2004). An algebraic approach to abstraction in reinforcement learn-
ing. Doctoral dissertation, Department of Computer Science, University of Mas-
sachusetts Amherst.

Reed, P., Mitchell, C., & Nokes, T. (1996). Intrinsic reinforcing properties of pu-
tatively neutral stimuli in an instrumental two-lever discrimination task. Animal
Learning and Behavior, 24, 38–45.

Reeke, G., Sporns, O., & Edelman, G. (1990). Synthetic neural modeling: the ‘darwin’
series of recognition automata. Proceedings of the IEEE (pp. 1498–1530).

Rimon, E., & Koditschek, D. (1992). Exact robot navigation using artificial potential
functions. IEEE Transactions on Robotics and Automation, 8, 501–518.

Rohanimanesh, K., & Mahadevan, S. (2005). Coarticulation: An approach for gen-
erating concurrent plans in markov decision processes. Proceedings of the 22nd
International Conference on Machine Learning (ICML-2005). Bonn, Germany.

185

Rome, E., Hertzberg, J., & Dorffner, G. (Eds.). (2006). Towards affordance-based
robot control. Berlin: Springer.

Rosenstein, M., & Grupen, R. (2002). Velocity-dependent dynamic manipulability.
International IEEE Conference on Robotics and Automation. Washington, DC.

Roy, D. (1999). Learning words from sights and sounds: A computational model.
Doctoral dissertation, Massachusetts Institute of Technology, Cambridge, MA.

Şahin, E., Çakmak, M., Doǧar, M., Uǧur, E., & Üçoluk, G. (2007). To afford of not
to afford: A formalization of affordances toward affordance-based robot control.
Adaptive Behavior, 4, 447–472.

Salisbury, J., & Craig, J. (1982). Articulated hands: Force control and kinematic
issues. The International Journal of Robotics Research, 1, 4–17.

Sandini, G., Metta, G., & Konczak, J. (1997). Human sensori-motor development
and artificial systems. Proceedings of AIR & IHAS. Japan.

Saunders, R. (2002). Curious design agents and artificial creativity: A synthetic
approach to the study of creative behavior. Doctoral dissertation, University of
Sydney.

Saxena, A., Driemeyer, J., & Ng, A. (2007). Robotics grasping of novel objects using
vision. International Journal of Robotics Research, 27, 157–173.

Schaal, S. (1999). Is imitation learning the route to humanoid robots? Trends in
Cognitive Sciences.

Schaal, S., Ijspeert, A., & Billard, A. (2003). Computational approaches to motor
learning by imitation. Philosophical Transactions: Biological Sciences.

Schöner, G., & Thelen, E. (2006). Using dynamic field theory to rethink infant
habituation. Psychological Review, 113, 273–299.

Schmidhuber, J. (1991a). Curious model-building control systems. Proceedings of the
International Joint Conference on Neural Networks.

Schmidhuber, J. (1991b). A possibility for implementing curiosity and boredome in
model-building neural controllers. From Animals to Animats: Proceedings of the
First International Conference on Simulation of Adaptive Behavior.

Schmidhuber, J., & Storck, J. (1993). Reinforcement driven information acquisition in
nondeterministic environments (Technical Report). Fakultat fur Informatik, Tech-
nische Universit at Munchen.

Schultz, W., & Dayan, P. (1997). A neural substrate of prediction and reward. Science,
275, 1593–1599.

186

Şimşek, Ö., & Barto, A. (2004). Using relative novelty to identify useful tempo-
ral abstractions in reinforcement learning. Proceedings of the 21st International
Conference on Machine Learning.

Sinapov, J., Wiemer, M., & Stoytchev, A. (2009). Interactive learning of the acous-
tic properties of household objects. Proceedings of the 2009 IEEE International
Conference on Robotics and Automation (ICRA). Kobe, Japan.

Singh, P. (2001). The public acquisition of commonsense knowledge.
http://www.openmind.org/commonsense/pack.html, 2001. The Open Mind Com-
monsense project.

Singh, S., Barto, A., & Chentanez, N. (2004a). Intrinsically motivated reinforcement
learning. Advances in Neural Information Processing Systems (NIPS).

Singh, S., James, M. R., & Rudary, M. R. (2004b). Predictive state representa-
tions: a new theory for modeling dynamical systems. AUAI ’04: Proceedings of the
20th conference on Uncertainty in artificial intelligence (pp. 512–519). Arlington,
Virginia, United States: AUAI Press.

Slack, J. (2002). Conrad hal waddington: the last renaissance biologist? Nature
Reviews Genetics, 3, 889–895.

Spencer, J. P., Clearfield, M., Corbetta, D., Ulrich, B., Buchanan, P., & Schoner,
G. (2006). Moving toward a grand theory of development: In memory of Esther
Thelen. Child Development, 77, 1521–1538.

Sporns, O. (2003). Embodied cognition. The Handbook of Brain Theory and Neural
Computation. Cambridge, MA: MIT Press.

Stark, M., Lies, P., Zillich, M., Wyatt, J., & Schiele, B. (2008). Functional object
class detection based on learned affordance cues. Sixth International Conference on
Computer Vision Systems, Vision for Cognitive Systems. Santorini, Greece.

Steels, L., & Vogt, P. (1997). Grounding adaptive language games in robotic agents.
Proceedings of the 4th European Conference on Artificial Life.

Stoytchev, A. (2005). Toward learning the binding affordances of objects: A behavior-
grounded approach. Proceedings of the AAAI Spring Symposium on Developmental
Robotics. Stanford University.

Sutton, R., & Barto, A. (1998). Reinforcement learning. Cambridge, Massachusetts:
MIT Press.

Sutton, R., Precup, D., & Singh, S. (1999). Between MDPs and semi-MDPs: A frame-
work for temporal abstraction in reinforcement learning. Artificial Intelligence, 112,
181–211.

187

Sweeney, J. D., Brunette, T., Yang, Y., & Grupen, R. A. (2002). Coordinated teams
of reactive mobile platforms. Proceedings of the 2002 IEEE Conference on Robotics
and Automation. Washington, D.C.

Sweeney, J. D., & Grupen, R. (2007). A model of shared grasp affordances from
demonstration. Proceedings of the IEEE/RAS International Conference on Hu-
manoid Robots. Pittsburgh, PA.

Thelen, E., & Bates, E. (2003). Connectionism and dynamic systems: Are they really
different? Developmental Science, 6, 378–391.

Thelen, E., & Smith, L. B. (1994). A dynamic systems approach to the development
of cognition and action. MIT Press.

Thrun, S. (1995). Exploration in active learning. The Handbook of Brain Theory and
Neural Computation. Cambridge, MA: MIT Press.

Uǧur, E., Oztop, E., & Şahin, E. (2009). Learning object affordances for planning.
ICRA 2009 Workshop Approaches to Sensorimotor Learning on Humanoid Robots.
Kobe, Japan.

Uppala, J., Karuppiah, D., Brewer, M., Ravela, C., & Grupen, R. (2002). On view-
point control. International IEEE Conference on Robotics and Automation. Wash-
ington, D.C.

Waddington, C. (1943). Organisers and genes. American Midland Naturalist, 30,
811–812.

Watkins, D., & Dayan, P. (1992). Q-learning. Machine Learning, 8, 279–292.

Weng, J. (2002). A theory for mentally developing robots. Proceedings of the 2nd
International Conference on Developmental Learning.

Weng, J., McClelland, J., Pentland, A., Sporns, O., Stockman, I., Sur, M., & Thelen,
E. (2001). Autonomous mental development by robots and animals. Science, 291,
599–600.

White, R. (1959). Motivation reconsidered: The concept of competence. Psychological
Review, 66, 297–333.

Wilson, A., Fern, A., Ray, S., & Tadepalli, P. (2007). Multi-task reinforcement
learning: A hierarchical bayesian approach. Proceedings of the 2007 International
Joint Conference on Machine Learning. Cornvallis, Oregon.

Wilson, M. (2002). Six views of embodied cognition. Psychonomic Bulletin & Review,
9, 625–636.

Winograd, T. (1971). Procedures as a representation for data in a computer program
for understanding natural language (Technical Report TR-235). AI Lab, MIT,
Cambridge, MA.

188

Yoshikawa, T. (1985). Manipulability of robotic mechanisms. The International
Journal of Robotics Research, 4, 3–9.

189

