
LEARNING AND GENERALIZING CONTROL-BASED
GRASPING AND MANIPULATION SKILLS

A Thesis Presented

by

ROBERT J. PLATT JR.

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

September, 2006

Computer Science

c© Copyright by Robert J. Platt Jr. 2006

All Rights Reserved

LEARNING AND GENERALIZING CONTROL-BASED
GRASPING AND MANIPULATION SKILLS

A Thesis Presented

by

ROBERT J. PLATT JR.

Approved as to style and content by:

Roderic Grupen, Co-chair

Andrew H. Fagg, Co-chair

Andrew Barto, Member

Oliver Brock, Member

Rachel Keen, Member

Bruce Croft, Department Chair
Computer Science

ACKNOWLEDGMENTS

I would like to thank the co-chairs of my thesis committee, Rod Grupen and Andy

Fagg, for their help during my graduate school career. Although many of the ideas

in this thesis derive from Rod’s vision, I was fortunate to hear perspectives from two

professors who love the field and their work. Rod’s gift is a profound intuition about

how intelligent systems should work and significant tenacity for seeing things through.

Andy has a broad perspective on Robotics and AI and encouraged me to think about

new ideas in a balanced way and quantitatively characterize my work. Two other pro-

fessors who significantly influenced me at UMass are Oliver Brock and Andy Barto.

Oliver broadened my perspective into other areas in robotics and Andy Barto showed

me what he thought was interesting in machine learning. I also want to thank Rachel

Keen for many interesting discussions regarding the relationship between robotics and

childhood development. Some others who have contributed to the ideas in this thesis

are: Mike Rosenstein, Steve Hart, John Sweeney, Balaraman Ravindran, Khashayar

Rohanimanesh, Mohammad Ghavamzadeh, Ashvin Shah, Brendan Burns, Deepak

Karuppiah, Shichao Ou, Bryan Thibodeau, Dave Wheeler, Mike Roberts, and Anto-

nio Morales. I also owe a debt of gratitude to the folks in the Dexterous Robotics Lab

at NASA Johnson Space Center. My frequent summertime visits to this group gave

me a better understanding of the problems that robot systems encounter in open

environments. My work was made possible through a fellowship from the NASA

Graduate Student Researchers Program.

On a personal note, I must thank my friends who have helped me to be more

creative and less focused on the issures of the moment. I must thank my parents

who love me, encouraged my interest in science and technology, and gave me the

iv

opportunities to pursue these things. Finally, I must thank my wife Kelly Porpiglia

who loves me and, on occasion, sacrifices our time together so that I can finish what,

at the time, appears to be some vital piece of work.

v

ABSTRACT

LEARNING AND GENERALIZING CONTROL-BASED
GRASPING AND MANIPULATION SKILLS

SEPTEMBER, 2006

ROBERT J. PLATT JR.

B.Sc., DUKE UNIVERSITY

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Roderic Grupen and Professor Andrew H. Fagg

One of the main challenges in the field of robotics is to build machines that can

function intelligently in unstructured environments. Because of this, the field has

witnessed a trend away from the sense-plan-act paradigm where the robot makes

an attempt to model everything before planning and acting. Nevertheless, few ap-

proaches to robotic grasping and manipulation have been proposed that do not re-

quire detailed geometric models of the manipulation environment. One exception is

the control-based approach where closed-loop controllers reactively generate grasp-

ing and manipulation behavior. This thesis develops and extends the control-based

approach to grasping and manipulation and proposes a new framework for learning

control-based skills based on generalized solutions.

This thesis extends control-based approaches to grasping and manipulation in

several ways. First, several new controllers relevant to reaching and grasping are pro-

vi

posed, including a grasp controller that slides contacts over the surface of an object

toward good grasp configurations by using haptic feedback. The number of different

grasps that can be generated using grasp controllers is expanded through the use of

virtual contacts. In addition, a new approach to statically-stable dexterous manip-

ulation is proposed whereby the robot navigates through a space of statically stable

grasp configurations by executing closed-loop controllers. In a series of experiments,

grasp controllers are shown to be a practical approach to synthesizing different grasps

from a variety of different starting configurations.

This thesis also proposes a new approach to learning control-based behaviors by

applying a generalized solution in new situations. Instead of searching the entire

space of all controller sequences and combinations, only variations of a generalized

solution, encoded by an action schema, are considered. A new algorithm, known

as schema structured learning, is proposed that learns how to apply the generalized

solution in different problem contexts through a process of trial and error. This

approach is applied to the grasp synthesis problem, enabling a robot to learn grasp

skills with relatively little training experience. The algorithm learns to select an

appropriate reach-grasp strategy based on coarse visual context. In an experiment

where a dexterous humanoid robot grasps a range of grocery items it had no prior

experience with, the learned grasp skills are shown to generalize well to new objects

and object configurations.

vii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . iv

ABSTRACT . vi

LIST OF TABLES . xii

LIST OF FIGURES .xiv

CHAPTER

1. INTRODUCTION . 1

1.1 Motivation. 1
1.2 Approach . 2
1.3 Contributions . 4

2. RELATED WORK . 7

2.1 Human Grasping . 7
2.2 Robot Grasping . 10

2.2.1 Grasp Closure Conditions . 10
2.2.2 Approaches to Grasp Synthesis . 17

2.3 Redundancy . 21
2.4 Robot Learning . 24

2.4.1 Reinforcement Learning . 25
2.4.2 Learning to Sequence Low-Level Control Processes 27
2.4.3 Learning Continuous Controllers . 29

3. THE CONTROL BASIS APPROACH . 32

3.1 Controller Synthesis . 32

3.1.1 Example: Cartesian Position Control . 35

viii

3.1.2 Example: Force Control . 38
3.1.3 Example: Kinematic Configuration Control 40

3.2 Controller Reference . 41
3.3 Null Space Composite Controllers . 42
3.4 A Language of Controllers . 45

3.4.1 A Context-Free Grammar . 46
3.4.2 State and Action Representation . 48

3.5 Summary . 50

4. GRASP CONTROL . 52

4.1 Background . 52

4.1.1 Sensing for Grasp Control . 53
4.1.2 Displacing Grasp Contacts by Probing . 54
4.1.3 Wrench Residual . 55
4.1.4 Calculating a Grasp Error Gradient . 57

4.2 Null Space Composition of Force Residual and Moment Residual 59
4.3 Displacing Grasping Contacts by Sliding . 63

4.3.1 Sliding Contacts . 63
4.3.2 Posture Optimization During Sliding . 65
4.3.3 Combining Grasping and Sliding . 67

4.4 Virtual Contacts . 69

4.4.1 Virtual Contacts Comprised of Multiple Physical Contacts 70
4.4.2 Gravity as a Virtual Contact . 72

4.5 Experiments . 74

4.5.1 Experiment 1: Grasping a Towel Roll Using Two Virtual
Fingers . 76

4.5.2 Experiment 2: Grasping a Towel Roll Using Three Virtual
Fingers . 80

4.5.3 Experiments 3 and 4: Grasping a Squirt Bottle and a
Detergent Bottle . 84

4.6 Summary . 87

5. DEXTEROUS MANIPULATION USING GRASP
CONTROLLERS . 89

ix

5.1 Related Work . 90
5.2 Maintaining Wrench Closure Constraints . 94
5.3 Dexterous Manipulation as a Sequence of Grasps . 98
5.4 Manipulation as a Markov Decision Process . 101
5.5 Case Study: Bimanual Manipulation on Dexter . 104

5.5.1 Controllers for Bimanual Manipulation . 105
5.5.2 Bimanual Manipulation MDP . 107
5.5.3 Demonstration 1: Learning A Rotation Gait 110
5.5.4 Demonstration 2: Object Transport . 113

5.6 Summary . 116

6. THE ACTION SCHEMA FRAMEWORK . 117

6.1 Motivation and Approach . 117
6.2 Background . 120
6.3 Action Schema Definition . 123
6.4 Optimal Policy Instantiations . 126
6.5 Structure Derived From the Control Basis . 131

6.5.1 Action Abstraction . 133
6.5.2 State Abstraction . 134
6.5.3 The Abstract Transition Function . 135

6.6 Schema Structured Learning Algorithm . 136

6.6.1 Example: Localize-Reach-Grasp . 138

6.7 Summary . 140

7. LEARNING TO GRASP USING SCHEMA STRUCTURED
LEARNING . 142

7.1 Controllers . 144

7.1.1 Visual Tracking and Localization . 144
7.1.2 Reaching . 146
7.1.3 Other Controllers . 149

7.2 Localize-Reach-Grasp Action Schema . 150

7.2.1 A Classification of Controllers for Grasp Synthesis Tasks 150
7.2.2 An Action Schema for Grasp Synthesis Tasks 151
7.2.3 An Implementation of Schema Structured Learning for Grasp

Tasks . 154

x

7.3 Learning Performance of localize-reach-grasp 155
7.4 Conditioning on Blob Eccentricity and Orientation 157

7.4.1 Learning to Ignore Object Orientation When Appropriate 158
7.4.2 Learning the Effect of Object Center of Gravity 163

7.5 Generalization to New Objects . 165
7.6 Summary . 171

8. CURIOSITY-BASED EXPLORATION IN SCHEMA
STRUCTURED LEARNING . 175

8.1 Background . 175
8.2 Greedy Action Selection . 177
8.3 Curiosity-Based Exploration . 181
8.4 Experiments . 183
8.5 Summary . 185

9. CONCLUSION . 186

9.1 Directions For Future Work . 189

APPENDICES

A. SUMMARY OF CONTROLLER NOTATION . 192
B. OBJECTS USED IN GROCERY BAG EXPERIMENTS 195
C. DESCRIPTION OF ROBOT PLATFORM . 200

BIBLIOGRAPHY . 203

xi

LIST OF TABLES

Table Page

2.1 The three major contact types and associated contact constraints. 14

5.1 This sequence of controllers first grasps and holds the object using the
contact resources, Γ1σ (steps 1 and 2). Subsequently, the system
transitions to a grasp that uses Γ2σ (steps 3 and 4), and finally
transitions to a grasp that uses the resources in Γ3σ (step 5). 98

5.2 Basis controllers for a manipulation task involving three sets of
contact resources, Γ1σ, Γ2σ, and Γ3σ. 101

5.3 Actions derived from basis controllers for manipulation tasks
involving sets of contact resources, Γ1σ, Γ2σ, and Γ3σ. 102

5.4 State representation for manipulation tasks involving sets of contact
resources, Γ1σ, Γ2σ, and Γ3σ. 103

5.5 The set of controllers available to Dexter during the case study. 106

5.6 Representation of state as a bit vector. Robot state is represented as
an 11-bit number. The assertion of a bit indicates that the
corresponding controller is converged. 108

5.7 A sequence of controllers that Dexter learned rotated the beach ball
by approximately 90 degrees. Step 3 is a macro action that
executes an opposition grasp controller followed by a grasp force

controller: πsgx|{γl,γr}
{γl} / πrgθ|{γr,γg}

{γr} followed by πgf |{γl,γr}
{γl,γr}. 110

6.1 Schema structured learning algorithm. 136

6.2 Sample-based schema structured learning algorithm. 137

7.1 t values for each of the 19 objects in the generalization
experiment. 169

A.1 Controllers and transforms introduced in Chapter 3. 192

xii

A.2 Controllers and transforms introduced in Chapter 4. 193

A.3 Controllers and transforms introduced in Chapter 5. 193

A.4 Controllers and transforms introduced in Chapter 7. 194

xiii

LIST OF FIGURES

Figure Page

3.1 The control basis specifies a control loop with a single feedback
term. 34

3.2 A Cartesian controller using either Jacobian transpose or Jacobian
inverse control. The Cartesian controller outputs joint commands
that the joint servo executes. 35

3.3 A force controller built on top of a joint controller. The force
controller executes joint displacements that are designed to cause
the joint controller to apply the desired force. 38

3.4 A nested controller where the output of φ2|σ2
τ2

is the reference for
φ1|σ1

τ1
. 42

3.5 The mechanics of the “subject-to” operator. In this figure, φ2|σ2
τ2

is
projected into the null space of φ1|σ1

τ1
. 43

4.1 The beach ball must remain within the workspace of the left hand
contacts as the left hand slides over the ball surface. 66

4.2 A grasp that uses a virtual contact. The two contacts on the left
constitute a virtual contact that opposes the physical contact on
the right. 70

4.3 The sliding grasp controller, πs|Γτ
Γτ

(
πgx|Γσ

Γτ

)
, was characterized for

these three objects. 75

4.4 Experiment 1 (towel roll, two contacts): the distribution of contact
orientations before, (a), and after, (b), the grasp controller has
executed. Orientation is the angle between a line that passes
between the two grasp contacts and the major axis of the object
(see text). 77

xiv

4.5 Experiment 1 (towel roll, two contacts): (a) grasp configuration
corresponding to a peak in Figure 4.4(b) near an orientation of
π/2 radians. (b) configuration corresponding to smaller peak near
an orientation of 0.45 radians. 77

4.6 Experiment 1 (towel roll, two contacts): average force residual, (a),
and moment residual, (b), for the grasp trials that terminated
near the peak at π/2 in Figure 4.4(b). 78

4.7 Experiment 1 (towel roll, two contacts): average force residual, (a),
and moment residual, (b), for the grasp trials that terminated
outside of the peak at π/2 in Figure 4.4(b). 78

4.8 Experiment 2 (towel roll, three contacts): the distribution of contact
orientations before, (a), and after, (b), the three-contact grasp
controller has executed. Orientation is the angle between a
normal to the plane of the three grasp contacts and the major
axis (see text). 80

4.9 Manipulator configurations during Experiment 2. (a) shows the
manipulator at a starting configuration near the peak in
Figure 4.8(a). (b) shows the manipulator after the sliding grasp
controller has executed and the manipulator has reached a
globally optimal grasp. (c) shows the manipulator after grasp
controller execution has reached a local minimum in the force
residual error function. 81

4.10 Experiment 2 (towel roll, three contacts): average force residual, (a),
and moment residual, (b), for the grasp trials that terminated
near the peak at 0 in Figure 4.4(b). 81

4.11 Experiment 2 (towel roll, three contacts): average force residual, (a),
and moment residual, (b), for the grasp trials that terminated
outside of the peak at 0 in Figure 4.4(b). 82

4.12 Experiment 3 (squirt bottle): the distribution of contact orientations
before, (a), and after, (b), the grasp controller has executed. 84

4.13 Experiment 4 (detergent bottle): the distribution of contact
orientations before, (a), and after, (b), the grasp controller has
executed. 85

4.14 Experiment 3 (squirt bottle): average force residual, (a), and moment
residual, (b), for the grasp trials that terminated near the peak at
π/2 in Figure 4.4(b). 85

xv

4.15 Experiment 4 (detergent bottle): average force residual, (a), and
moment residual, (b), for the grasp trials that terminated near the
peak at π/2 in Figure 4.4(b). 86

5.1 Illustration of forces applied by the grasp force controller. 94

5.2 The results of executing three different controllers in the null space of

the grasp force controller, φf |σf (Γσ)

τgf (Γτ) (σc(Γ)) (a) shows Dexter’s

configuration after executing a position controller, φp|σp(Γσ)
τp(Γτ) (xref),

in the null space. (b) shows the results of executing a kinematic

posture controller, φk|σk(Γσ)
τk(Γτ) , in the null space. (c) shows the

results of executing a different grasp controller, φr|σ(Γτ)
τ(Γτ)

(
πgθ|Γσ

Γτ

)
,

in the null space. 97

5.3 An MDP describing the manipulation sequences derivable from the
basis controllers in Table 5.2. 103

5.4 The Markov Decision Process (MDP) used in the case study. The
circles with binary numbers in them represent states. The arrows
represent likely transitions caused by taking actions. Different
trajectories through this graph correspond to the different ways
the beach ball can be manipulated by executing controllers from

Table 5.5 in the null space of πgf |{γl,γr}
{γl,γr}, πrgθ|{γl,γg}

{γl} , or

πrgθ|{γr,γg}
{γr} . 109

5.5 The sequence of states that corresponding to Table 5.7. 111

5.6 Learning curve illustrating performance as a function of experience.
As the number of experiences (episodes) increases, the average
number of steps to rotate the beach ball decreases. 112

5.7 An illustration of Dexter’s configuration after executing each of the
three macro actions used in the object transport demonstration.
In (a), Dexter has executed πγl,γg so as to reach a left/gravity
opposition grasp. In (b), Dexter has executed macro action πγl,γr

so as to reach a left/right opposition grasp. In (c), Dexter has
executed πγr,γg so as to reach a right/gravity opposition grasp. 114

xvi

5.8 Estimated probability of reach success and failure (vertical axis) as a
function of goal position (horizontal axis). (a) illustrates this
relationship when the ball is held in opposition between the left
hand and gravity. (b) illustrates the relationship when the ball is
held between both hands. (c) illustrates the relationship when the
ball is held in the right hand. 115

6.1 Projecting the abstract policy onto the underlying state-action space:
Assume that the robot is in state s2. The state mapping, f ,
projects this to abstract state, s′2. The abstract policy specifies
that abstract action a′2 is to be taken next. This inverse action
mapping, g−1 projects a′2 back onto the set of feasible action
instantiations. 125

6.2 The localize-reach-grasp action schema. 126

7.1 The robot characterizes objects in terms of an ellipsoidal fit to the
segmented object. (a) and (b) illustrate the left and right camera
views of a squirt bottle. (c) and (d) illustrate the corresponding
segmented “blobs” and their ellipsoids. 145

7.2 The towel roll used in these experiments was a cylinder 10 cm in
diameter and 20 cm high. 156

7.3 Median grasp performance of schema structured learning over eight
experiments. In each experiment, Dexter learned to grasp a
vertically-presented towel roll by making 26 localize-reach-grasp
trials. The horizontal axis is trial number and the vertical axis is
the mean initial moment residual. The lower the moment
residual, the high the quality of the grasp. Notice that
performance improves until leveling off at a near-zero error
between trials 10 and 15. 157

7.4 Mean hand orientation (in radians) just after reaching and before
executing the grasp controller averaged over the eight
experiments. The horizontal axis is trial number and the vertical
axis is the orientation of the manipulator with respect to the
major axis. Orientation is the angle between the normal of the
plane and the major axis of the object. Orientations near π/2
radians represent configurations where the hand is perpendicular
to the major axis. Notice that after 10 or 15 trials, the robot has
learned to reach to an orientation roughly perpendicular to the
object’s major axis. 158

xvii

7.5 In this experiment, Dexter alternately attempted to grasp an
eccentric object and a round object. The eccentric object was a
towel roll 20cm tall and 10cm in diameter. The round object was
a plastic ball 16cm in diameter. 159

7.6 Conditioning on eccentricity: the four bars in this graph show the
maximum estimated probability of grasp success (for round and
eccentric objects) when reaching to both a position and
orientation, and when reaching to a position without specifying
orientation. 160

7.7 Conditioning on eccentricity: (a) probability of grasp success when
reaching to a round object by specifying a position goal alone. (b)
probability of grasp success when reaching toward an eccentric
object by specifying both position and orientation. In (a), the
system learns that a reach to a position around 0.4 is correlated
with a high rate of grasp success. In (b), the system learns that in
order to grasp an eccentric object, the manipulator must be
oriented approximately perpendicular to the object major axis
and it must be positioned correctly between the object center and
the edge. 161

7.8 The ball, as it is perceived by the vision system. Notice that the
vision system “sees” a halo around the bottom that is caused by
the ball’s shadow. This halo confuses the vision system and causes
it to estimate the position of the object centroid too low. 162

7.9 Conditioning on elevation angle: results of learning to lift an eccentric
object when it is presented horizontally, (a), versus when it is
presented vertically, (b). (a) shows that the robot learns to grasp
the object near its center of mass when it is presented
horizontally. In (b), the system learns that position does not
matter when the object is presented vertically. Note that
regardless of the vertical elevation of the box, the system learns to
orient its grasp perpendicular to the object major axis. 163

7.10 The five training objects used in the generalization experiment. 165

7.11 The 19 test objects used in the generalization experiment. 166

xviii

7.12 Generalization: results show that experience grasping a few training
objects improves the robot’s ability to grasp objects that it has
never seen before. The pairs of bars on the horizontal axis show
grasp error with (the leftmost bar in each pair) and without (the
rightmost bar in each pair) learning experience for each of the 19
test objects. The error bars show a 95% confidence interval
around the mean. 167

7.13 Generalization: (a) shows the initial moment residual with and
without learning averaged over all 19 objects. (b) shows the
average probability of successfully lifting each object with (the
leftmost bar) and without (the rightmost bar) training experience.
In both plots, the error bars show 95% confidence intervals. 168

7.14 Generalization: the robot’s experience grasping the five test objects
improves the probability of successfully grasping and lifting the 19
objects (shown on the horizontal axis) that it has never seen
before. The pair of bars for each object show the average
probability of successfully holding and lifting each object with
(the leftmost bar in each pair) and without (the rightmost bar)
training experience. 170

7.15 The set of objects used in the generalization experiment. The
horizontal axis represents object major axis length; the vertical
axis represents object eccentricity. Each dot represents an object,
plotted as a coordinate in the eccentricity-length space. The five
large dots represent the training objects used in the generalization
experiment. The 19 small dots represent the test objects. Notice
that the test objects cover the eccentricity-length space fairly
evenly. (Objects far from the line x = y are not one-hand
graspable.) . 172

8.1 The probability that schema structured learning with greedy action
selection selects a two-fingered reach-grasp policy instantiation,
(a), or a three-fingered policy instantiation, (b). Notice that after
the initial few reach-grasp trials, the robot learns to attempt
two-fingered grasps persistently. (Data averaged over four
experiments.) . 178

8.2 Two possible grasps of a cylinder. In (a), the Barrett hand has
realized an optimal three-fingered grasp. In (b), the robot is
unable to form a grasp because the two fingers on the sides of the
cylinder cannot reach the other end. The robot cannot escape this
configuration without reaching to a different location or selecting
a different grasp controller. 179

xix

8.3 Performance of schema structured learning using greedy action
selection. The solid line shows the estimated maximum
probability of success of a two-fingered reach-grasp policy. The
dotted line shows the maximum probability of success of a
three-fingered reach-grasp policy. Since schema structured
learning does not attempt any three-fingered grasps after the first
few trials, the estimated value of three-fingered reach-grasp
policies never improves to its true value. 180

8.4 Comparison of schema structured learning performance (the
estimated maximum probability of success) when curiosity-based
exploration is used (the solid line) and random exploration is used
(the dotted line.) The error bars show one standard deviation
above and below the mean. Random exploration sampled actions
from a uniform distribution over all feasible actions. (a) compares
these exploration strategies in terms of the maximum value of a
two-fingered reach-grasp policy. (b) compares exploration
strategies in terms of the maximum value of a three-fingered
reach-grasp policy. Notice that schema structured learning learns
faster when curiosity-based exploration is used. 183

B.1 Objects 1 - 8. 196

B.2 Objects 9 - 16. 197

B.3 Objects 17 - 24. 198

B.4 Object 25. 199

C.1 Dexter, the UMass bimanual humanoid. 200

C.2 Dexter’s two Barrett hands are equipped with fingertip load cells. 201

xx

CHAPTER 1

INTRODUCTION

1.1 Motivation

Understanding intelligence is one of the great challenges of modern science. On

one side of the issue, psychologists, neuroscientists, and cognitive scientists try to

understand the neural processes behind natural intelligence. On the other, computer

scientists and roboticists try to create intelligent machines. We don’t even know

exactly why humans evolved intelligence at all. Perhaps intelligence helped early

humans function in groups [37]. Or, perhaps intelligence made complex language

possible [84]. It has been proposed that intelligence provided technological advantages

in the form of stone tools [44]. It has even been proposed that intelligence is the

arbitrary result of sexual preference, like a peacock’s feathers [68].

Regardless of what selective advantages intelligence conferred, the cranial volume

of our hominid ancestors nearly tripled after two important anatomical developments:

a bipedal gait and changes in the hand. The recovery of the tibia, femur, and pelvis

clearly indicate that A. afarensis walked upright and therefore no longer needed to use

the fore-limbs for locomotion [84]. In addition, based on small changes in the shape of

the carpal (wrist) bones compared with other apes, Mary Marzke concludes that A.

afarensis was capable of three important grasps: the pad-to-side grip, the three-jawed-

chuck, and the five-jawed cradle [44]. Since the last major anatomical changes that

preceded the development of human intelligence were related to the hand, studying

robot manipulation may be one avenue toward a better understanding of artificial

intelligence.

1

Another reason to study robot grasping and manipulation is that it is a significant

instance of a more general category, the force domain problem. Force domain problems

have objectives that are most simply described in terms of desired forces and moments.

In contrast, position domain problems have objectives most easily specified in terms

of reaching particular geometric positions or configurations. Force domain problems

are fundamentally important to robotics because robots cannot physically affect their

world without applying forces. A key characteristic of these problems is that, in many

cases, the robot must displace its contacts to new configurations that allow the desired

contact forces to be applied. Accomplishing this is difficult for at least the following

two reasons. First, multiple sources of sensor information must be integrated in order

to determine how to apply the desired forces. In addition, precise control of contact

forces may require local adjustment of the the contact configuration based on force

feedback. Second, the problem of computing an appropriate contact configuration

is computationally complex because of significant constraints regarding how general-

purpose manipulators can apply forces.

1.2 Approach

The robotics literature describes few approaches to grasping and manipulation

that have been shown to work in unstructured environments. Many approaches

strictly define grasping and manipulation problems in terms of an input object geom-

etry and an output contact configuration or trajectory. This definition suggests that

force domain problems should be solved though planning. However, in open environ-

ments, it cannot be assumed that the robot has access to the complete geometry of

the object to be grasped. Instead, it must decide how to grasp and manipulate based

exclusively on sensor evidence, primarily vision and tactile sensing. It is intuitively

unclear how visual and tactile data should be interpreted by a planning system and

used to calculate a desired contact configuration. Instead, the temptation is to re-

2

construct the object surface geometry from visual and tactile data and to solve the

resulting planning problem. However, given the difficulties in reconstructing object

geometries from tactile data, this approach begs the question as to whether a geo-

metrical reconstruction of the environment is the best intermediate representation for

force domain problems.

Control-based approaches recast the geometrical representation of force domain

problems in terms of a set of controllers that must be correctly sequenced or com-

bined. Robotics problems are often assumed to be defined in the external world

and all robot motor capabilities are assumed to be potentially part of the solution.

In contrast, control-based approaches to robotics define the problem differently and

therefore have a different solution space. Rather than assuming that the robot is

capable of unstructured motor activities, control-based approaches assume that all

activity is expressed as sequences or combinations of controllers. The value of this

kind of transformation of the robot control problem largely depends upon the set of

controllers that the robot may execute. If the robot is constrained to execute only a

small number of controllers, than the control problem is simplified, but the capabil-

ities of the robot are restricted. If the robot has access to a large but unstructured

set of controllers, then the capabilities of the robot may be fully represented, but

the control problem is no simpler than the original problem. This thesis proposes

using the control basis representation of a large, but structured, set of controllers that

simplifies the representation of force domain problems [29].

Solving force domain problems requires precise control of the positions of and

forces applied by manipulator contacts. This thesis proposes a set of controllers

that may be combined in structured ways to solve force domain problems. These

controllers are shown to be capable of robustly and consistently leading the robot

from limited domains of attraction to quality grasp configurations.

3

Control-based approaches solve end-to-end tasks by sequencing and combining

controllers. However, in open domains, it may not be possible to analytically charac-

terize controllers in all possible contexts and situations. One solution is for the robot

to learn how to sequence controllers in order to reach goals. This thesis proposes

that this learning problem can be simplified by utilizing structure in the controller

representation. When the language of controllers is structured appropriately, control-

based solutions to similar problems are represented in similar ways. This allows a

number of related problems to be solved starting with a single generalized solution.

Therefore, force domain problems can be decomposed into two subtasks: solving for

a general solution, and finding a particular solution, given the constraints imposed by

the general solution and the execution context. This thesis proposes a learning algo-

rithm that utilizes this decomposition to simplify the process of learning appropriate

sequences of controllers.

1.3 Contributions

This thesis makes contributions in two areas: (1) a language of controllers suitable

for force domain problems is proposed and (2) new methods for learning appropriate

controller sequences are proposed. The process of characterizing this work resulted in

an accumulation of practical grasping and manipulation skills on Dexter, the UMass

bimanual humanoid robot C.

In the first area, this thesis develops and extends Coelho’s control-based approach

to grasp synthesis [12]. A language of controllers appropriate for the force domain is

created by concurrently integrating Coelho’s controllers with force and position con-

trollers. In Coelho’s approach, grasps are synthesized by executing two controllers,

a force residual and moment residual controller, alternately. Chapter 4 proposes a

composite grasp controller that executes the moment residual controller in the null

space of the force residual controller. This approach enables the grasp to be synthe-

4

sized faster and without ascending the force residual error function. Chapter 4 also

proposes a hybrid position and force controller that lightly slides grasp contacts over

an object surface. When this sliding controller is combined with the grasp controller,

the resulting composite controller can collect large amounts of tactile data that allows

it to converge to good grasp configurations quickly and robustly. Finally, Chapter 4

expands the number of grasps that may be generated by allowing grasp controllers

to be parameterized by composite contacts known as virtual contacts. The grasp

controllers proposed in Chapter 4 are characterized in a series of experiments that

demonstrate that grasp controllers funnel robot configurations from large domains of

attraction to good grasp configurations.

Chapter 5 extends this control-based approach to dexterous manipulation. The

chapter introduces a grasp force controller that applies grasping forces sufficient to

hold an object. Statically-stable grasp configurations are maintained during manip-

ulation by executing all controllers in the null space of this grasp force controller.

Dexterous manipulation is represented as a sequence of grasp controllers. Transitions

between grasp configurations are handled by executing the subsequent grasp con-

trollers in the null space of a stable grasp force controller. Chapter 5 demonstrates

this approach in a case study where a humanoid robot manipulates a beach ball using

two hands.

In the second area, this thesis proposes a new method of learning how to sequence

controllers in order to solve end-to-end tasks. Instead of searching the space of all

possible controller sequences, Chapter 6 proposes restricting attention to a class of

related sequences described by a generalized solution known as an action schema.

This approach assumes that a well-structured set of controllers has been defined such

that controllers with similar functionality have similar representations. Each step

in the action schema is a generalized action that corresponds to a class of related

controllers. A new learning algorithm, called schema structured learning, is proposed

5

that discovers how to use this general solution in specific problem contexts based on

trial-and-error experience.

Chapter 7 applies schema structured learning to the grasp synthesis problem.

The general solution is described by an action schema that can be implemented in

different ways. Coarse visual features derived from the position and principle axes of

a foreground blob are used to decide how to instantiate the action schema in order to

grasp different objects. Experimental results show that schema structured learning is

capable of learning how to grasp a single object quickly (within 10 to 15 trials). In a

pair of empirical tests, schema structured learning adapts grasp strategy based on the

eccentricity and elevation angle of the foreground blob. Finally, the generic nature of

the visual blob features is shown to allow grasp strategies to generalize to new objects.

This is demonstrated in a grocery bagging task where schema structured learning

produces a statistically significant improvement in performance over a random policy

for objects it had never experienced before.

Finally, Chapter 8 addresses a problem with exploration in schema structured

learning, where the robot can fail to discover new solutions after an adequate solu-

tion has been found. This manifests itself in reaching and grasping when an object can

be grasped in two distinct ways. In this case, schema learning may only discover one

reach-grasp strategy for the object. Chapter 8 proposes curiosity-based exploration

that only explores a particular solution as long as it remains “interesting.” Exper-

imental results show that this approach allows the robot to learn multiple feasible

reach-grasp strategies.

6

CHAPTER 2

RELATED WORK

Robotic grasping and manipulation problems are difficult to solve. Even when the

inertial dynamics of the system are ignored, few practical solutions to automatic grasp

synthesis and manipulation exist. The perspective of this thesis is that geometric

solutions to these problems are unlikely to be able to solve unconstrained grasping

and manipulation problems. Instead, this thesis synthesizes grasps by combining

multiple closed-loop controllers. Since no single controller is appropriate in every

situation, we propose that the robot must learn which instantiations of an generalized

grasp policy are appropriate in different contexts. This chapter informs the rest of

the thesis by considering how humans are thought to synthesize grasps. Next, it

reviews two closure conditions relevant to grasping and summarizes relevant grasp

synthesis research. Next, the focus of this thesis on concurrent controller execution is

informed by important ideas from redundancy. Finally, a review of various approaches

to learning in robot systems is presented with a focus on the relationship to schema

structured learning (proposed in Chapter 6).

2.1 Human Grasping

Humans select grasps from a large repertoire based primarily on object character-

istics and task requirements. One of the earliest researchers to investigate the kinds of

grasps that humans use was Schlesinger [72]. He enumerated six grasps that humans

use frequently: cylindrical, fingertip, hook, palmar, spherical, and lateral. Schlesinger

proposed that humans select grasps from this set based on the shape and size of the

7

object. In contrast, Napier proposed that humans also consider the functional aspects

of a grasp. He proposed two major categories of grasps: power grasps and precision

grasps [51]. The power grasp holds an object between the fingers and the palm. The

precision grasp holds an object between the tips of the thumb and fingers. In addi-

tion to looking different, these two grasp types have different functional capabilities.

The power grasp is very stable, but makes it difficult to manipulate the object. The

precision grasp is less stable, but is very manipulable.

Rather than focusing directly on object shape or task requirements, Iberall sug-

gests that the way that a grasp applies opposing forces (its opposition space) is the

most important characteristic of the grasp. Iberall proposes three basic types of

grasps: pad opposition, palm opposition, and side opposition [31]. These grasp types

are differentiated primarily in terms of the direction of the forces they apply relative

to the plane of the palm. In pad opposition, forces are applied between the tips (the

pads) of the thumb and finger(s), parallel to the palm. In palm opposition, forces are

applied between the palm and fingers, perpendicular to the palm. In side opposition,

forces are applied between the thumb and the side of the index finger, transverse to

the palm. This understanding of grasp type is only indirectly linked to either object

shape or task requirements. When forming a grasp, Iberall proposes that the human

first translates object and task information into a desired opposition. Then, based on

the desired opposition, a grasp is selected.

One of the most comprehensive studies of the grasps used by humans is by

Cutkosky and Wright who developed a taxonomy of human grasps based on an exten-

sive study of one-handed grasps used by machinists working with hand-held tools in

small-batch machining shops [17]. The machinists were interviewed and their grasp

choices recorded for many of the tools that were used in their daily work. The tax-

onomy describes 16 total grasps in a tree. At the root of the tree are Napier’s two

categories: power and precision. Precision grasps are decomposed into seven different

8

types while power grasps are decomposed into nine subcategories. In addition to de-

composing the space of grasps based on grasp morphology, Cutkosky and Wright also

correlate grasp types to object size and task geometry. Grasp types near the leaves of

the tree are considered to be suitable for a more specific task geometry while variation

across the width of the tree corresponds to object size. In spite of the large number

of grasp types identified, Cutkosky admits that these are not the only grasps that

may be selected. While machinist grasps roughly fell into the identified categories,

Cutkosky and Wright observed machinists to use variations on these grasp types de-

pending upon small variation in object shape and task [17]. Also, they note that

there is not a one-to-one correspondence between task and grasp type. Machinists

were often observed to use a sequence of grasps during the execution of a single task.

These various perspectives on human grasping are relevant to this thesis because

they can provide insight into the mechanical and computational nature of grasping.

One way to use these ideas is to build a computational system that chooses the same

grasp morphology that humans have been observed to select. This approach was taken

by Cutkosky and Wright who built an expert system that associated task requirements

and object shape with a particular grasp from their taxonomy [16]. After asking a

series of questions regarding task and object shape, the expert system would respond

with the desired grasp type. Unfortunately, while this approach produces a good

qualitative description of the morphology of the grasp, it is not clear how to translate

this into an actual robot grasp. It is not enough to simply move the robot hand

joints into the same configuration as the human prototype because small differences

in the object or task could require a slightly different joint configuration. Cutkosky

reports that, in practice, the machinists adapt the grasp type to the particular needs

of the object and task. One computational description of this variation is found in

Pollard’s work where a grasp prototype is modified to “fit” a particular object [62].

Another explanation for small variations from the prototype grasp is in the grasp

9

control work of this thesis. The grasp controller makes small contact displacements

along the object surface based on local tactile feedback. This is a practical way to

start with an approximate grasp and then modify it so as to find a good grasp.

Iberall’s view of human grasping is useful from a computational point of view

because she connects the morphology of the grasp with the forces (the opposition)

associated with it. This is particularly relevant to the grasp control work of this

thesis. As will be described in Section 4, grasp controllers are parameterized by a

set of contacts that will be used (displaced along the object surface) to form a grasp.

The implication of Iberall’s work is that the human selects different opposition types

(grasp types) depending upon the forces that are needed. In the context of grasp

controllers, this translates into a “contact parameterization.” Although the robot

can attempt to grasp using an arbitrary set of contacts, the effectiveness of the grasp

is determined by the contacts that are actually used.

2.2 Robot Grasping

This section summarizes key previous research in the area of grasping and grasp

synthesis. First, we review two key notions of the meaning of “grasp”: form clo-

sure and force closure. Second, we overview of several previous approaches to grasp

synthesis and explain how they relate to the methods proposed in this thesis.

2.2.1 Grasp Closure Conditions

Good definitions for the word “grasp” have been of paramount importance to

grasp synthesis research. Under what conditions should a set of contacts (a “contact

configuration”) be considered a grasp? The literature typically considers two major

definitions: form closure and force closure. Form closure is the condition that the

grasped object cannot move without physically intersecting one of the grasp contacts.

Force closure is the condition that it is possible to compensate for arbitrary forces and

10

moments experienced by the object by applying forces and moments at the contacts.

These conditions are described in more detail below.

For the purposes of grasp configuration analysis, it is useful to introduce represen-

tations of generalized velocity and generalized force. A twist represents generalized

velocity as a six-dimensional vector consisting of three dimensions of translational

velocity followed by three dimensions of angular velocity: ξ = [v, ω]T . Similarly, a

wrench represents generalized force by Ω = [f ,m]T , where f is a three-dimensional

force and m is a three-dimensional moment. Twist and wrench represent rotational

velocity and moment, respectively, in exponential (also known as axis angle) coordi-

nates. In this representation, a rotation is represented by a vector in three-dimensional

Cartesian space that points along the axis of rotation and has a magnitude equal to

the angle of rotation. Note that twist and wrench are both instances of a more gen-

eral class of rigid body motions known as the screw. With respect to grasp closure

properties, form closure can be analyzed in terms of the set of possible object twists.

Likewise, force closure is understood in terms of object wrenches.

Form closure can be analyzed in terms of the instantaneous velocity of the object

at points on the object surface where contact is made. Note that the following

development follows that of [8]. Let ci be a point on the surface of the object at the

ith contact. The velocity of ci is,

ċi = v + ω × ci, (2.1)

where v and ω are the object velocity and rotational velocity respectively. This

equation can be re-written,

ċi =




I3

S(ci)




T

u̇, (2.2)

where u̇ = (v, ω)T is the object twist, I3 is a 3× 3 identity matrix, and

11

S(ci) =




0 cz −cy

−cz 0 cx

cy −cx 0




is the cross product matrix for ci. Recall that form closure requires that no object

twist is possible without geometrically intersecting the contact surface. For the ith

contact, this constraint can be written,

nT
i ċi ≤ 0, (2.3)

where ni is the inward pointing surface normal at the ith contact.

This constraint can be evaluated across all contacts by expanding the form of

Equation 2.2 to represent the velocity for the k contacts,

ċ = GT u̇, (2.4)

where

G =




I3 . . . I3

S(c1) . . . S(ck)


 . (2.5)

Let NT = (n1, . . . ,nk)
T be a matrix consisting of the k surface normals. Then form

closure can be written as a constraint on the set of all object twists,

NT GT u̇ ≥ 0, (2.6)

evaluated over all possible object twists, u̇ ∈ R6. Equation 2.6 is an attractive

formulation of a grasp closure property because the constraint is represented as a

linear inequality. The existence of an object twist that violates form closure can be

checked using standard linear programming techniques. Using this representation of

12

form closure, it can be shown that at least seven contacts are needed to achieve form

closure in R6 [8].

It is also possible to analyze a grasp in terms of the wrenches that the contact

configuration can apply to the object. In order to do this, it is important to consider

the wrenches that can be applied at the individual contacts. The system of wrenches

that a contact can apply is assumed to correspond to the contact type. Three contact

types are frequently used in grasp analysis: the point contact without friction, the

point contact with friction, and the soft contact. In the point contact without friction

model, the contact is assumed to be able only to apply a force normal to the object

surface. In the point contact with friction model, the contact is also assumed to be

able to apply frictional forces tangent to the object surface. Finally, in addition to

the wrenches that can be applied by the point contact with friction model, the soft

contact model assumes that the contact can also apply a frictional moment about an

axis normal to the object surface. Table 2.1 summarizes these three contact types.

The wrench system that a particular contact type can apply is summarized by

its wrench basis matrix, shown in the middle column of Table 2.1 [49]. Let fi be the

vector of forces and moments that the ith contact type is able to apply. For a point

contact without friction type, fi = f3 where f3 is the force the normal force applied

by the contact. For a point contact with friction type, fi = (f1, f2, f3)
T , where f3

is the normal force and f1 and f2 are orthogonal frictional forces applied tangent to

the object surface. For a soft contact type, fi = (f1, f2, f3, f4)
T , where f1 and f2 are

tangent frictional forces, f3 is the normal force, and f4 is a frictional torque applied

normal to the object surface. The last column (“contact constraints”) in Table 2.1

constrains these forces to the appropriate friction cones. The wrench basis matrix

maps these forces and moments into the contact reference frame,

wci
= Bifi, (2.7)

13

Contact Type Wrench System Contact Constraints

Frictionless Point Contact Bpc =




0
0
1
0
0
0




f3 ≥ 0

Point Contact With Friction Bpcf =




1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0




√
f 2

1 + f 2
2 ≤ µf3

fz ≥ 0

Soft Contact Bsc =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 1




√
f 2

1 + f 2
2 ≤ µf3

f4 ≤ γf3

f3 ≥ 0

Table 2.1. The three major contact types and associated contact constraints.

14

where wci
is the contact wrench in the contact reference frame. For example, the

wrench basis matrix for the soft contact maps fi = (f1, f2, f3, f4)
T into the contact

frame: fx = f1, fy = f2, fz = f3, and mz = f4.

The wrench basis matrix does not capture contact constraints on the magnitude

and direction of forces that can be applied. These constraints are written in the last

column of Table 2.1. Normal forces must be directed inward toward the object surface

and frictional forces and moments must lie inside the contact friction cone. For the

frictionless point contact, the contact constraint is:

FCpc = {f ∈ R|f3 ≥ 0}. (2.8)

For the point contact with friction, the contact constraint is:

FCpcf = {f ∈ R3|
√

f 2
1 + f 2

2 ≤ µf3, f3 ≥ 0}. (2.9)

For the soft contact, the contact constraint is:

FCsc = {f ∈ R4|
√

f 2
1 + f 2

2 ≤ µf3, f3 ≥ 0, |f4| ≤ γf3}. (2.10)

If FCi represents the contact constraints for the ith contact, then the space of contact

wrenches that can be applied by that contact is, Bifi, where fi ∈ FCi.

In order to evaluate the quality of a multi-contact grasp, it is necessary to convert

the wrench applied by each contact into the object reference frame. This can be

accomplished by pre-multiplying each contact wrench by Ti, a 6 × 6 matrix that

converts the ith contact reference frame into the object reference frame. Therefore,

the total wrench applied by k contacts to an object can be written,

w =
k∑

i=1

TiBifi, (2.11)

15

=
k∑

i=1

Gifi,

where fi ∈ FCi. This relationship is summarized by

w = Gf , f ∈ FC, (2.12)

where G = [G1, . . . , Gk], f = [f1, . . . , fk], and FC = FC1 × . . .× FCk. The matrix G

is known as the grasp map because it maps the forces directly applied by the contacts

to the total object force [49].

Recall that force closure is the condition that an arbitrary object wrench can

be resisted by applying appropriate contact wrenches. Because the contacts cannot

“pull” on the surface, force closure grasps must incorporate internal forces. An in-

ternal force is a vector of contact wrenches, fN , that satisfies contact constraints and

lies inside the null space of G: fN ∈ N(G) ∩ FC. It can be shown that a contact

configuration is force closure if and only if the range space of G spans R6 and inter-

nal forces exist [49]. Mathematically, force closure is harder to check for than form

closure because of the non-linear shape of the contact constraints (i.e. the friction

cone). Nevertheless, the force closure property is frequently used because it directly

considers the frictional forces that grasp contacts can apply.

Grasp synthesis techniques can incorporate analytical methods that check for

sufficiency conditions for force closure. This is the approach taken in Chapter 4, where

a grasp controller is proposed that has minima in frictionless equilibrium contact

configurations. A contact configuration is in equilibrium when the convex hull of

contact wrenches contains the origin: i.e. when

k∑

i=1

αiwi = 0, (2.13)

16

for some assignment to αi ∈ (0, 1] for i = 1 . . . k. A stronger condition is friction-

less equilibrium when Equation 2.13 can be satisfied by contact wrenches that have

no frictional components. It has been shown that frictionless equilibrium is a suffi-

cient condition for force closure in the presence of friction [64]. Therefore, the grasp

controller of Chapter 4 has minima in force closure contact configurations.

2.2.2 Approaches to Grasp Synthesis

Of obvious importance to robotic grasping is grasp synthesis, the problem of au-

tonomously deciding where to place the grasp contacts on the surface of an object.

Based on the grasp closure definitions introduced in Section 2.2.1, one might pro-

pose a brute-force search of all possible contact configurations. Unfortunately, simply

checking for form or force closure can be challenging by itself; exhaustively checking

all contact configurations can be computationally prohibitive. Instead, many of the

approaches reviewed in this section look for a single good grasp configuration without

attempting to be comprehensive.

Among the earliest approaches is the work of Van-Duc Nguyen which considers

special cases of grasping planar polygonal objects [52]. In cases where friction is

to be considered, individual contacts are associated with their friction cones. A

necessary and sufficient condition for force closure with two contacts is that the line

connecting the contacts lies inside both friction cones. Nguyen proposes searching

for two-contact configurations where this property is met. Nguyen also proposes

an algorithm for calculating four-finger grasps that takes as input four edges of the

polygon and calculates contact locations on each of the four edges that result in a

frictionless force-closure grasp. Nguyen extended this approach to three-dimensional

polygonal objects [53].

Nguyen’s approach to calculating two-fingered frictional grasps was generalized to

planar curved objects with piecewise smooth boundaries by Faverjon and Ponce [22].

17

Again, the technique is based on finding two contacts that can be connected by

a line that passes through the respective contact friction cones. An algorithm is

proposed that decomposes the object surface into pairs of independent graspable arcs

where a force-closure grasp results when the contacts are placed anywhere on the two

arcs. This type of approach is extended to four-fingered grasps of polyhedral objects

by Sudsang and Ponce [77]. They propose four classes of four-fingered grasps: the

concurrent grasp, the pencil grasp, and the regulus grasp. For each of these grasp

types, a manifold of contact configurations is searched by a linear program that finds

configurations that satisfy specific necessary conditions for force closure.

Instead of searching for contact configurations that satisfy geometrical conditions

associated with good grasps, a number of other approaches propose a grasp quality

measure and search for grasps that optimize the relevant measure. One of the first

examples of this kind of approach is the work of Li and Sastry who propose several

quality measures based on characterizing the grasp map, G, from Section 2.2.1 [39].

They analyze the image of a unit sphere under G. The resulting ellipsoid has axes

with lengths equal to the singular values of G. Li and Sastry propose quality measures

that correspond to the shortest axis of the ellipsoid, the total volume of the ellipsoid,

and how well this ellipsoid contains various task directions. Based on these quality

measures, numerical optimizations techniques are used to find good grasps. A related

approach is proposed by Kirkpatrick et al. and Ferrari and Canny who propose a

quality measure proportional to the radius of the largest sphere that can be inscribed

in the convex hull of contact wrenches [24, 38]. Intuitively, this measure represents the

worst-case ability of the grasp geometry to resist perturbing object wrenches. They

propose an algorithm that iterates through the faces of a planar polyhedral object

and searches for a grasp configuration that optimizes this measure.

Another example of the optimization approach is the work of Mirtich and Canny

who propose optimality metrics associated with two- and three-fingered planar and

18

three dimensional grasps [47]. In the two-fingered planar case, they propose maximiz-

ing the length of the chord connecting the two contact points. In the three-fingered

planar case, they propose maximizing the area of an equilateral triangle that circum-

scribes the object. This approach is extended to the case of three-dimensional objects

by searching for the largest area equilateral triangular prism that circumscribes the

object. In each of these cases, an optimum guarantees that the grasp is best able to

resist perturbing forces and moments.

Teichmann and Mishra propose a similar strategy for finding three-finger grasps

of planar objects [80, 81]. They define a metric that is optimized when the area of

a circumscribing triangle (not necessarily equilateral) is minimized. They point out

that, starting in an arbitrary three-contact configuration, it is possible to use local

contact and normal information to determine whether a neighboring configuration has

a smaller area circumscribing triangle. They propose gradient descent of this grasp

quality metric resulting in a locally minimal area triangle. This triangle is guaranteed

to be a wrench closure grasp. Interestingly, Teichmann and Mishra also propose a

practical approach for finding these optimal three-fingered grasps. They propose a

“reactive algorithm” approach to grasp synthesis where a robot manipulator locally

senses position and normal information and displaces contacts on the object surface

until a minimum area triangle is reached.

The approaches to grasp synthesis discussed so far do not make any prior as-

sumptions about the contact configuration of the desired grasp. In contrast, Pollard

proposes starting out with a good grasp grasp and “growing” regions around each

contact that maintain force closure [63]. This approach takes a single exemplar grasp

as input and outputs a equivalence class of similar grasps. The exemplar is used to

constrain the subsequent search for good grasps. After determining the equivalence

class of similar grasps, any of the contacts in the exemplar contact configuration can

be displaced anywhere in their corresponding regions while still maintaining force clo-

19

sure. A strength of this approach is the way that grasps are specified first qualitatively

and then quantitatively. Since the exemplar is essentially a qualitative description of

the grasp, it can be derived from the grasp of a different object. This allows prior

grasp knowledge to influence how to grasp new objects.

Techniques that use closed-loop controllers to synthesize grasps are most closely

related to the approach to grasp synthesis taken by this thesis. One of the first

approaches in this vein was by Jameson and Leifer who propose using hill-climbing

methods to optimize an unconstrained quadratic error function by adjusting the ma-

nipulator contact configuration [33]. The error function corresponds to a measure of

grasp “stability.” Related work is that of Son, Howe, and Hagar who combine visual

and tactile control primitives to grasp a rod using a two-fingered gripper [74]. A vi-

sual servo is defined that moves the gripper near the object. Then a tactile primitive

executes that makes contact with the object. Once contact is made, tactile sensors

determine the relative gripper-object orientation and reorient the gripper so that it

is better aligned with the object. A key contribution of this work is the empha-

sis on the dual use of vision and tactile control primitives at different stages of the

grasping task. Yoshimi and Allen take a completely vision-based approach and define

two closed-loop visual controllers that can be combined to grasp an object [86]. The

first visual servo moves the hand to the object. The second controller implements

a vision-based “guarded-move.” Finally, Grupen and Coelho and Grupen propose

grasp primitives that displace grasp contacts to good grasp configurations using local

tactile feedback [26, 13]. Grasp synthesis is accomplished by sequencing control prim-

itives in a context-appropriate sequence. A more detailed discussion of this approach

is deferred until Section 4.1, where extensive background is provided.

Note the similarity between the above control-based approaches and the previously

described optimization approaches, particularly that of Teichmann and Mishra [80].

In both types of approaches, a scalar function is defined over the contact configuration

20

space that corresponds to grasp quality (for optimization approaches, it is the quality

measure; for control-based approaches, it is the controller error function.) However,

optimization approaches use only one quality measure that must be defined over the

entire contact configuration space. In contrast, control-based approaches define many

controllers where each controller is defined over a limited region of configuration space.

These controllers are sequenced and combined by an additional framework that results

in a globally convergent system.

2.3 Redundancy

A major contribution of this thesis (Chapters 4–5) is to create relatively complex

grasping and manipulation controllers by concurrently combining simpler controllers.

We follow the control basis approach of prioritizing concurrently executing controllers

by executing subordinate controllers subject-to (without interfering with) primary

controllers. One way to implement this is to project the output of a subordinate

controller into the null space of the locally-linear gradient of the primary controller.

In the robotics literature, this approach was used in the context of redundant manip-

ulators by Yoshikawa [85].

Consider two controllers that output desired velocities in configuration space. By

sending these velocities to a low-level velocity servo, either controller can actuate

the joints of the robot. Assume that the primary controller outputs a velocity in

configuration space, q̇1, and the subordinate controller outputs a velocity, q̇2. One

way of simultaneously executing both controllers is simply to add both velocities and

send the sum to the velocity servo. Unfortunately, because the two velocities may

destructively interfere with each other, this approach does not necessarily accomplish

the objectives of either controller. Another way to accomplish both objectives simul-

taneously is to prioritize the controllers so that the velocity from the secondary does

not interfere with that of the primary.

21

We accomplish this by ensuring that the velocity of the subordinate controller

runs tangent to the objective function of the primary controller. Let π1(q) = x be

the objective function of the primary controller. A velocity in configuration space, q̇,

runs tangent to π1 when the dot product is zero:

∇xπ
T
1 q̇ = 0. (2.14)

The output of a composite controller that executes both controllers concurrently while

giving priority to π1 can be decomposed into two parts: the output of the primary

controller and the component of the output of the subordinate controller that satisfies

Equation 2.14. With respect to the output of the subordinate controller, assume that

we are looking for a velocity, q̇′2, that minimizes

f(q̇′2) =
1

2
(q̇2 − q̇′2)

T
(q̇2 − q̇′2) , (2.15)

subject to ∇xπ
T
1 q̇′2 = 0, where q̇2 = ∇xπ2 is the “desired” velocity that corresponds

to the gradient of the subordinate controller. This can be solved using the method of

Lagrange multipliers. Set the gradient of the function to be minimized equal to the

gradient of the constraint times a constant:

∂f(q̇′2)
∂q̇′2

= λ
∂

(
∇xπ

T
1 q̇′2

)

∂q̇′2
(2.16)

− (q̇2 − q̇′2) = λ∇xπ1

∇xπ
T
1 (q̇′2 − q̇2) = λ∇xπ

T
1 ∇xπ1.

Since ∇xπ
T
1 q̇′2 = 0, this reduces to:

−∇xπ
T
1 q̇2 = λ∇xπ

T
1∇xπ1. (2.17)

22

Solving for λ yields:

λ = −
(
∇xπ

T
1∇xπ1

)−1∇xπ
T
1 q̇2. (2.18)

Substituting λ into Equation 2.16, we get:

(q̇′2 − q̇2) = −∇xπ1

(
∇xπ

T
1∇xπ1

)−1∇xπ
T
1 q̇2. (2.19)

Solving for q̇′2, we get:

q̇′2 = q̇2 −∇xπ1

(
∇xπ

T
1∇xπ1

)−1∇xπ
T
1 q̇2 (2.20)

=
(
I −∇xπ1(∇xπ

T
1∇xπ1)∇xπ

T
1

)
q̇2

=
(
I − (∇xπ

T
1)#∇xπ

T
1

)
q̇2,

where (∇xπ
T
1)# is the pseudoinverse of∇xπ

T
1 . Multiplying q̇2 by

(
I − (∇xπ

T
1)#∇xπ

T
1

)

guarantees that the result runs tangent to the gradient of the primary controller ob-

jective function, ∇xπ1. Equation 2.20 projects the subordinate controller velocity,

q̇2, into the null space of ∇xπ
T
1 . In this thesis, the matrix that projects into the null

space of ∇xπ
T is abbreviated

N (∇xπ
T
1) = I − (∇xπ

T
1)#∇xπ

T
1 . (2.21)

The idea of projecting the output of one controller into the tangent space of an-

other controller is central to this thesis. This allows a large number of controllers to be

defined in terms of a small set of basis controllers, as described in Section 3.3. Com-

bining multiple control primitives is particularly important in the context of grasping

and manipulation where a single task may involve several different objectives. For

example, in Section 4.2, we use null space composition to concurrently combine force

and moment residual control primitives so that the manipulator moves toward small

23

force residual and moment residual configurations simultaneously. In Section 4.3, we

use null space composition to implement a hybrid force-position controller that is

used during grasping. Finally, in Chapter 5, null space composition is used to create

a many different manipulation controllers using only a few primitives.

2.4 Robot Learning

The ability for robots to adapt autonomously to new environmental circumstances

is essential to their success. Without adaptation or learning, human designers must

manually program all aspects of the robot’s behavior. There are at least three prob-

lems with doing this: 1) it is time-consuming and burdensome for humans to do all

the programming; 2) it is impossible for the human designer to predict every possible

situation the robot could encounter; 3) there may be an infinite number of such situ-

ations. These last two problems are particularly troublesome in open environments,

i.e. environments that are not specially designed for the robot. At any time, the en-

vironment could change and present the robot with situations entirely different from

those that the programmer anticipated.

These problems are particularly significant for robot grasping because of the com-

plexity of grasping and manipulation problems. Some of the things that must be

considered are: the size and shape of the object, its position and orientation, the

presence of obstacles, and the kinematic ability of the robot to reach the object and

apply forces. These problems are compounded by the practical truth that sensing

and actuation with the precision required for many grasping tasks is close to the level

of noise and uncertainty. This thesis proposes a new learning framework, schema

structured learning, to address some of these problems. As background, we review

reinforcement learning (RL), a class of learning algorithms widely used in robotics.

Lastly, this section puts schema structured learning in context by reviewing a number

of approaches to robot learning.

24

2.4.1 Reinforcement Learning

Reinforcement learning (RL) is a model-free approach to solving autonomous con-

trol problems that learns solutions through a process of trial and error. RL assumes

that the control problem is specified in the form of a Markov Decision Process (MDP).

An MDP models a sequential decision process faced by a decision making agent. An

MDP is a tuple,

M = 〈S, A, Ψ, T, R〉 , (2.22)

where S is a set of possible states of the system, A is a set of actions that type

system may take, Ψ ⊆ S × A matches states with actions that are allowed in that

state, T : S × A × S → [0, 1] is a function that maps transitions (st, at, st+1) to the

probability of the transition occurring, and R : S ×A → R is a reward function that

maps pairs of states and actions to a real-valued reward [66].

At each decision point in the sequential decision process, the agent observes that

it is in some state s ∈ S and is allowed to choose an action a ∈ A such that (s, a) ∈ Ψ.

The state of the system evolves stochastically according to the probability distribution

encoded in T and the agent receives “rewards” based on the reward function R. The

current value of future rewards is discounted as an exponential function of time [78]

Rt = rt+1 + γrt+2 + γ2rt+3 + . . . =
∞∑

k=0

γkrt+k+1. (2.23)

An agent can have a policy that determines what action choice the agent will

make in every state stochastically. A policy can be specified in terms of a probability

distribution π : S × A → [0, 1] over actions that specifies the chance that the agent

should select an action in a given state. Given that the agent starts in a given state

and executes a fixed policy, it is possible to calculate the return the agent expects to

receive

V π(s) = Eπ

{ ∞∑

k=0

γkrt+k+1|st = s

}
. (2.24)

25

V π(s) is known as the expected return of the state s, or simply the value of the state.

A key aspect of an MDP that simplifies the calculation of values is the Markov

property. The Markov property stipulates the probability of reaching any next state

after taking an action is exclusively a function of the current state:

P (st+1|st, at, st−1, at−1, . . . , s0, a0) = P (st+1|st, at). (2.25)

This property makes it possible to determine state values using

V π(st) =
∑
at

π(st, at)
∑
st+1

T (st+1|st, at) [R(st, at) + γV π(st+1)] , (2.26)

where T (st+1|st, at) is the probability of transitioning to st+1 given that at executes

in state st, and R(st+1, st, at) is the expected one-step return of the transition [78].

For any MDP, there exists an optimal value function V ∗ such that

∀s ∈ S, V ∗(s) = max
π

V π(s). (2.27)

A policy that generates the optimal value function is an optimal policy π∗. Dynamic

programming algorithms such as Jacobi policy iteration and Gauss-Seidel value it-

eration can be used to calculate V ∗ and π∗ in time polynomial in the number of

states [7, 66].

One of the disadvantages of dynamic programming methods is that a complete

system model is required ahead of time and the average case run time is not much

faster than the worst case. Reinforcement learning (RL) addresses both of these prob-

lems using an on-line trial-and-error approach. One commonly used RL algorithm is

SARSA where the agent chooses actions that maximize the currently estimated value

of taking the action in the current state [78]. These action-values can be initialized

26

randomly as a function Q : S × A → R mapping state-action pairs onto the real

numbers. As the agent acquires experience, SARSA iteratively uses the equation

Q(s, a) ← Q(s, a) + α [r + γQ(s′, a′)−Q(s, a)]

to update its estimate of Q. As a result, the agent simultaneously improves its current

policy because it executes the actions that have the largest Q-values for the current

state. In order to ensure that the system has sufficient experience with a variety

of states and actions, the agent sometimes stochastically executes an exploratory

action that does not necessarily have the largest value. Eventually, with decaying

exploration, this algorithm converges to the optimal action-value function, Q∗, and

the optimal policy, π∗ [78].

2.4.2 Learning to Sequence Low-Level Control Processes

Reinforcement learning is attractive to many robot researchers because it suggests

that robots can learn autonomously by exhaustively searching for ways to accomplish

a desired objective. However, since most robots have a high-dimensional continuous

configuration space, it is fequently necessary to redefine the learning problem in a

more abstract or structured way. One way to do this is to create a substrate of low-

level control processes that execute sequentially or in tandem to accomplish desired

goals. This reduces a continuous learning problem to a discrete one.

One of the first and most well known of these approaches is the behavior-based sub-

sumption architecture of Brooks [10]. Brooks proposes solving robot control problems

by creating a hierarchy of independently competent behaviors. Behaviors are locally

robust units of control that implement “simple” functions such as obstacle avoidance,

wall following, and navigation. Although each behavior executes reactively when its

pre-conditions are met, the subsumption architecture arbitrates between behaviors

that are triggered simultaneously. Behaviors can be defined either in terms of low-

27

level actions or other behaviors. This architecture has had a large impact on the

robotics community because it demonstrates that complex robot behavior could be

derived from “simple” behavior. In other work, Maes and Brooks propose learning

when various behaviors should become active based on trial-and-error experience [41].

At first, behaviors reactively execute only in response to a minimal set of precondi-

tions. However, the set of preconditions that activates a behavior is allowed to grow

if those preconditions are associated with positive results. They demonstrate this

approach on Genghis, a six legged robot, that autonomously learns how to combine

behaviors to create different walking gaits.

Nicolescu and Mataric also investigate learning to sequence behaviors in behavior-

based systems [54]. For them, behaviors are parameterizable units of control that are

each associated with an abstract description of preconditions and effects. This con-

crete description of preconditions and effects makes it possible to reason about the

results of sequencing behaviors. They encode sequences of behaviors that satisfy be-

havior preconditions and ordering constraints in a behavior network. Once a behavior

network is defined, new abstract behaviors are represented as paths through the net-

work and can be learned from human demonstration. Martinson, Stoytchev, and

Arkin also investigate autonomously learning to sequence behaviors in a behavior-

based architecture. However, instead of using behavior networks, the different ways

of sequencing behavior are encoded in a Markov Decision Process (MDP). They show

that Q-learning, a form of RL, can quickly learn to solve a tank intercept problem.

Ulam and Balch apply the same approach to teams of robots [83]. Compared with

behavior networks, a disadvantage of the MDP approach is the additional need to

define discrete states.

Related to these approaches to behavior sequencing is Huber and Grupen’s control

basis approach [30]. Huber and Grupen propose creating a potentially large number

of controllers by parameterizing and combining elements of a small set of basis con-

28

trollers. As with Martinson, Stoytchev, and Arkin, Huber and Grupen also use RL to

learn useful sequences of controllers. However, instead of manually defining relevant

states, they automatically derive a state representation from the basis set of con-

trollers. This approach has been used to learn quadrupedal walking gaits, grasping,

and manipulation behavior [30, 12, 61].

The contributions of this thesis can be viewed as contributions to behavior-based

and control-based methods. In particular, the work of this thesis is completely framed

in terms of the control basis framework (for a detailed description of the control basis,

see Chapter 3). The first part of this thesis (Chapters 4 and 5) focuses on solving

grasping and manipulation in a control-based framework. The key question here is

how coordinated, dexterous behavior can be represented by a sequence of “primitive”

controllers. The second part of this thesis (Chapters 6 - 8) focuses on the controller

sequencing problem. Instead of attempting to sequence arbitrary controllers in order

to solve arbitrary tasks, this thesis proposes a constrained search through variations

on a generalized control sequence. This approach relies on an important characteristic

of the control basis: that it factors a controller into an “objective” function and its

parameters.

2.4.3 Learning Continuous Controllers

Instead of learning “on top of” a substrate of lower level behaviors or controllers,

other approaches to robot learning attempt to learn directly in the space of sensing

and actuation (this is often a continuous space). The resulting control policies may

be useful by themselves or as control primitives in a larger system. Early work in

this area used reinforcement learning to learn three different behaviors autonomously

in a behavior-based system: find box, push box, and un-wedge [42]. A subsumption

architecture used these three behaviors to solve a box-pushing task. For each behavior,

a state and action space was defined as well as a reward function corresponding to the

29

behavior’s objective. By attempting to find and push boxes autonomously, the system

learned appropriate control policies that implemented each of the three behaviors.

Policy gradient learning, a variant of RL, has also been used to learn robot con-

trol policies directly in a continuous low-level state and action space. In one example,

Rosenstein uses policy gradient learning to discover parameterizations of PID con-

trollers that solve a robot weightlifting problem [69]. In the weightlifting problem, the

robot must take advantage of manipulator dynamics in order to lift a heavy weight

— similar to the way human weightlifters use the “clean-and-jerk” technique to lift

a barbell. In this example, policy gradient is used to learn the correct timing of

controller execution as well as a gain matrix that parameterizes each controller so as

to achieve successful lifts. In a more recent example, Tedrake uses policy gradient to

learn a stable bipedal passive walking gait [79]. Learning is simplified because the

mechanics of the walker make it passively stable. In this case, the goal is to learn

ankle control parameters that lead to a stable return map in the frontal plane.

Other approaches view learning robot control as a function approximation prob-

lem where the goal is to learn a mapping from the current state to control actions

that achieves a desired objective. An important class of function approximation tech-

niques are “lazy learning” methods. These methods store all training data with little

modification. Whenever the system receives a query point, the control is approxi-

mated by a function on a subset of the training data. An example of a lazy-learning

technique is k-nearest neighbor. Given a query point, k-nearest neighbor identifies

the k training samples nearest to the query in the input space and takes the average

of the k samples. A variant on k-nearest neighbor is weighted averaging. In this

approach the output is an average of all training points, weighted by inverse distance

to the query point. In another lazy learning technique, locally weighted regression,

the training data near the query point are approximated by a linear function. This

method outputs the value of the linear function at the query point.

30

In order to learn robot control policies, function approximation methods first

learn a forward model of a system and then invert the forward model to calculate

desired action. The forward model is approximated by a function that best matches

a corpus of training data. The forward model, y = f(x,u), maps the current state,

x, and a control action, u, onto an outcome vector, y [5]. For any state of the

system, the inverse, u = f−1(x,y), returns an action estimated to accomplish a desired

outcome. This approach was used to train a robot to play billiards. The robot learns

the relationship between current ball position, cue action, and the resulting bumper

position where the ball hits [48]. In another example, locally weighted regression was

used to learn “devil sticking,” a game where a stick is tossed back and forth using

two manipulating sticks. Locally weighted regression was used to learn the linear

parameters for a linear quadratic regulator that performed the task [71]. Finally,

locally weighted learning has also been used to learn weighting parameters for a set

of second order “control policies” (CPs) based on observing human motion data [32].

This approach was used to reproduce human tennis backhand swings on a humanoid

robot.

The implementation of schema structured learning described in Chapter 6 incor-

porates a function approximator in order to approximate a binary outcome (success

or failure) as a function of state and action. Whereas Schaal and Moore use lazy-

learning methods to learn control policy parameters directly, schema structured learn-

ing approximates expected outcome for individual actions and uses this information

to estimate the probability of success of an entire action schema instantiation.

31

CHAPTER 3

THE CONTROL BASIS APPROACH

The control basis is a framework proposed by Huber and Grupen that encodes

complex robot behavior as combinations of a small set of basis controllers. Multi-

step robot behavior is generated by executing sequences of composite controllers.

This thesis is a proposal for representing force domain behavior such as grasping

and manipulation using the control basis. Chapters 4–5 represent complex grasping

behavior in terms of a few control primitives. Chapters 6–8 address the problem of

selecting controllers in order to grasp objects as a function of context. This chapter

overviews the control basis approach to controller synthesis and introduces three

basis controllers that will be important for the rest of the thesis: position, force, and

kinematic conditioning controllers. This chapter also describes discrete control basis

representations of action and state.

3.1 Controller Synthesis

The control basis systematically specifies closed-loop controllers by matching an

artificial potential with a sensor and effector transform. Roughly speaking, the arti-

ficial potential specifies an objective for a class of controllers. The sensor transform

binds that class of objectives to a specific sensory signal. Finally, the effector trans-

form specifies motor degrees of freedom (DOFs) that will be used to accomplish the

control objective.

32

An artificial potential, φi, is a scalar error function defined over a typed domain,

φi : Xi → ε. (3.1)

The domain of the artificial potential is associated with a specified data type (Xi in

Equation 3.1). For example, an artificial potential used for Cartesian position control

is defined over the domain of Cartesian positions.

The sensor transform, σj, maps a subset of control resources, Γj ⊆ Γ, and the

appropriate sensor signals, onto the typed domain of the artificial potential, Xj:

σj : Γj → Xj. (3.2)

Note that, for clarity, the sensor transform omits its explicit dependence on sensor

signals. For example, a Cartesian position sensor transform maps control points on

a manipulator (the control resources) to their corresponding Cartesian positions (as-

suming a particular manipulator configuration). Every sensor transform is associated

with a range of a specified data type. When combining a sensor transform with an

artificial potential, we require that the data type of the domain of φi matches the

data type of the range of σj.

The artificial potential defines a gradient that the controller descends. This gra-

dient,

∇xi
φi, (3.3)

is defined over the typed domain, Xi, of the artificial potential. The effector transform,

τk, is a Jacobian matrix that is used to map this gradient into the output space, Yk:

τk(Γk) =

(
∂xγ1

∂yk

,
∂xγ2

∂yk

, . . . ,
∂xγ|Γk|

∂yk

)T

. (3.4)

In this equation, xγi
is the configuration of control resource γi, yk is a point in the

output space, and Γk = {γ1, γ2, . . . , γ|Γk|} ⊆ Γ is a subset of the control resources.

33

Like the sensor transform, the effector transform is a function of Γk. In order to use

a given effector transform, τk, with a potential function, φi, the row space of τk(Γk),

Xi, must match the data type of the potential function.

+∆

xφ τ∆X Y∆

robot

Σ

X

−

+

σ

eX ref joint
servo

Figure 3.1. The control basis specifies a control loop with a single feedback term.

In the control basis, a closed-loop controller is specified by matching an artificial

potential gradient, ∇xi
φi, with a sensor transform, σj (Γj), and an effector transform,

τk (Γk). However, these elements may only be combined when the data type of the

domain of φi matches that of the range of σj (Γj) and the row space of τk(Γk). This

is illustrated in Figure 3.1. The sensor transform calculates the configuration of the

control resources (in the domain of the artificial potential.) The controller error is

computed by taking the difference between this sensory feedback and the control

reference, xref . The gradient of the error, ∇xi
φi, is computed and projected into the

output space, Yk. This gradient is:

∇yk
φi = τk(Γk)

+∇xi
φi(xref − σj(Γj)),

where τk(Γk)
+ is the transpose or a generalized inverse of τk(Γk). Rather than pa-

rameterizing a controller by a single reference configuration, it is sometimes desirable

to parameterize it with a set of reference configurations, Xref ⊆ Xj. In this case, on

every servo cycle, the controller servos toward the nearest configuration in the set.

Controller error is the minimum error over the set of reference configurations,

34

∇yk
φi = τk(Γk)

+∇xi
φi

(
arg min

x∈Xref

‖ x− σj(Γj) ‖ −σj(Γj)

)
. (3.5)

This controller is written:

φi|σj(Γj)
τk(Γk) (Xref) . (3.6)

If the controller has a zero reference, then it is dropped for simplicity of representation:

φi|σj(Γj)
τk(Γk). (3.7)

3.1.1 Example: Cartesian Position Control

joint
p

X∆ q∆
J+Σ

−

+

X ref

FK(q)
X q

e

robot

servoK

Figure 3.2. A Cartesian controller using either Jacobian transpose or Jacobian
inverse control. The Cartesian controller outputs joint commands that the joint servo
executes.

In Cartesian position control, the robot manipulator moves so as to realize a

desired end-effector position. Two common types of Cartesian position control are

Jacobian transpose and Jacobian inverse control. In Jacobian transpose control, the

manipulator executes joint displacements of

∆q = JT Kpe (3.8)

on every control cycle, where q is a vector of joint angles, J is the manipulator

Jacobian, Kp is a small scalar position gain, and e is the Cartesian error. Similarly,

35

Jacobian inverse control executes a joint displacement of

∆q = J#Kpe (3.9)

on every control cycle, where J# is the Jacobian pseudo-inverse. These two ap-

proaches are illustrated in Figure 3.2. In this thesis, we assume that the Cartesian

controller operates on top of a joint controller (shown by the dotted box in Figure 3.2)

that servos to a reference joint configuration. The joint controller is implemented by

a PD servo that rejects position errors at the joint level and optionally includes an

inertial model of the manipulator.

In the control basis implementation of these controllers, the sensor transform

implements the FK(q) function (the forward kinematics) and the effector transform

implements the JT or J# function. The sensor transform,

σp(Γm) = FKΓm(q) (3.10)

=
(
xγ1 ,xγ2 , . . .xγ|Γm|

)T
,

calculates a vector of positions for the control resources in Γm. Assuming a quadratic

potential function, φp = 1
2
Kpe

2, the gradient is

∇xφp = Kpe. (3.11)

The effector transform is

τp(Γm) =




Jγ1

...

J|Γm|




. (3.12)

36

The transpose or generalized inverse of this Jacobian projects a vector of displace-

ments, ẋγ1 , . . . , ẋ|Γm|, into the robot configuration space. Putting these pieces to-

gether, the control basis implementation of Cartesian Jacobian transpose control,

φp|σp(Γm)
τp(Γm) (xref), (3.13)

descends the gradient calculated in Equation 3.5,

∇qφp = τp(Γm)T∇xφp (xref − σp(Γm)) (3.14)

=
(
JT

γ1
, . . . , JT

|Γm|
)
Kp [xref − FKΓm(q)] ,

Note that this position controller requires that the sensor and effector transforms are

parameterized by the same control resources, Γm. It moves these control resources to

a vector of positions, xref .

For example, φp|σp({γ1,γ2})
τp({γ1,γ2}) (x1,x2) is a control basis representation of a position

controller that moves the two control resources, Γm = {γ1, γ2}, toward Cartesian

positions, x1 and x2. The sensor transform, σp({γ1, γ2}) calculates the 6-vector con-

sisting of the Cartesian positions for the control resources. The effector transform,

τp(γ1, γ2) calculates the two manipulator Jacobians that project controller error into

the robot joint space. The resulting controller moves the control points γ1 and γ2 as

close as possible (minimizes the sum of the two Euclidian distances) to the reference

positions.

The representation of an orientation controller is similar to that of a position con-

troller. Instead of φp, the orientation controller uses a quadratic potential function,

φr, defined over the SO3 space of orientations. The orientation controller is parame-

terized by a sensor transform, σr(Γm), that calculates the orientations for the list of

control points in Γm. The effector transform, τr(Γm), encodes the Jacobian transpose

for the same control points. The orientation controller is: φr|σr(Γm)
τr(Γm) .

37

3.1.2 Example: Force Control

σ

f JTf∆ t∆ q∆ joint
controllerΣ

−

+

f ref e
K p

−1

robot

f

K

Figure 3.3. A force controller built on top of a joint controller. The force controller
executes joint displacements that are designed to cause the joint controller to apply
the desired force.

In force control, the robot manipulator moves so as to apply a desired force (or

moment) with the end effector. As with the position controller, it is assumed that the

force controller is implemented on top of a PD joint servo. Of particular importance

to force control is the “spring-like” behavior of the PD controller in the manipula-

tor configuration space. For the joint PD controller, a steady-state change in joint

torques, ∆t, is related to a change in joint positions, ∆q, through the joint controller

position gain, Kj,

∆t = Kj∆q. (3.15)

Therefore the force controller can be implemented by projecting the Cartesian force

error through the Jacobian transpose to calculate a desired torque and then sending

the joint controller the corresponding joint displacement, as illustrated in Figure 3.3.

On each cycle of the force controller, the joint controller is sent a change in joint

position of

∆q = K−1
j JT Kf (fref − f) . (3.16)

In the control basis implementation of the force controller, the sensor transform

calculates the forces applied at the Γm control resources (i.e. contacts),

σf (Γm) = fΓm , (3.17)

38

The potential function is a quadratic that applies the gain φf = 1
2
Kfef

2 and has a

gradient of:

∇fφf = Kfef . (3.18)

The effector transform applies the Jacobian transpose and the inverse position gain:

τf (Γm) = K−1
j




Jγ1

...

Jγ|Γm|




. (3.19)

The control basis implementation of the force controller,

φf |σf (Γm)

τf (Γm) (fref), (3.20)

descends the gradient,

∇qφf = τf (Γm)T∇fφf (fref − σf (Γm)) (3.21)

=
(
JT

γ1
, . . . , JT

γ|Γm|

)
K−T

j Kf (fref − fΓm) .

This controller attempts to apply the vector of reference forces, fref , with the set

of contacts, Γm. As with the position controller, kinematic limitations may prevent

the manipulator from applying the exact reference forces. In this situation, the force

controller minimizes the sum of the force errors.

A moment controller can be defined in a similar way to the orientation controller.

Let φm be a quadratic potential function defined of the space of moments. Let σm(Γm)

and τm(Γm) be the sensor and effector transforms that sense moments and encode

the Jacobian transpose, respectively. Then the moment controller can be written,

φm|σm(Γm)
τm(Γm) .

39

3.1.3 Example: Kinematic Configuration Control

Kinematic configuration control adjusts a manipulator’s joints so as to optimize

a measure of kinematic quality. A variety of kinematic quality criteria exist. Many

of these are related to the velocity ellipsoid,

(
J#ẋ

)T (
J#ẋ

)
≤ 1. (3.22)

Perhaps the most famous of these is Yoshikawa’s manipulability index,

ω =
√

det (JJT), (3.23)

that maximizes the volume of the velocity ellipsoid [85]. Another calculates the ratio

between the minimum and maximum singular values of the manipulator Jacobian

and is maximized by an isotropic ellipsoid [50].

In this section, a kinematic configuration controller is introduced that optimizes

for the manipulator posture. Let qref be the joint configuration farthest away from

the joint limits. We define a kinematic configuration controller that moves the arm

toward qref ,

∆q = Kp (qref − q) , (3.24)

where Kp is the controller gain and q is the current joint configuration. As with the

position and force controllers, it is assumed that a PD joint servo exists that actually

executes the joint desired displacements.

This kinematic configuration controller can be represented in the control basis

framework by the artificial potential, φk = 1
2
Kpeq

2. The gradient is:

∇qφk = Kpeq. (3.25)

Since the kinematic configuration controller is defined over the joint space, the sensor

and effector transforms are parameterized by a set of control resources corresponding

40

to the set of joints. The sensor transform, σk(Γm), returns the joint angles, q|Γm|,

for the set of joints in Γm. The effector transform, τk(Γm), is essentially a diagonal

matrix that selects joints to actuate. On every servo cycle, the kinematic configuration

controller displaces the joints by:

∇qφk = τk(Γm)T∇qφk (qref − σk(Γm)) (3.26)

= τk(Γm)T Kp (qref − qΓm) .

3.2 Controller Reference

Equation 3.6 denotes the controller reference as xref . However, in addition to

allowing a constant reference, this thesis also allows the reference to be specified by

a sensor transform or another controller. When the controller reference is a sensor

transform, the resulting controller servos toward a configuration specified by the refer-

ence sensor transform. When the reference of controller, φi|σj
τk , is the sensor transform,

σr(Γr), the resulting controller is,

φi|σj(Γj)
τk(Γk)(σr(Γr)). (3.27)

In order to take the difference between σj and σr, it is required that these two sensor

transforms have ranges of the same data type. This data type must match the domain

of the artificial potential. For example, let σcent3({γl, γr}) be a visual sensor transform

that calculates the Cartesian position of an object based on stereo images, γl and γr.

When the position controller of Section 3.1.1 is parameterized by σcent3 as a reference,

the resulting controller,

φp|σp(Γm)
τp(Γm) (σcent3({γl, γr})), (3.28)

moves the control resources, Γm, to the Cartesian position of the object.

Instead of parameterizing a controller with a reference sensor transform, it is also

possible to parameterize the controller with another controller as reference. In this

41

servo

2

∆

xφ2 τ2 φ τ
σ

1
Y1∆Y2∆X2∆

Σ
−

+

σ

e

2

X ref

robot

joint

X

Figure 3.4. A nested controller where the output of φ2|σ2
τ2

is the reference for φ1|σ1
τ1

.

case, the output space of the reference controller (the column space of the effector

transform) must have the same data type as the domain of the artificial potential.

Let π2 = φ2|σ2(Γ2)
τ2(Γ2) and π1 = φ1|σ1(Γ1)

τ1(Γ1) be controllers such that the output space of π2

has the same data type as the domain of the artificial potential of π1. Then π2 can

be used to parameterized the reference of π1:

φ1|σ1(Γ1)
τ1(Γ1)

(
φ2|σ2(Γ2)

τ2(Γ2)

)
. (3.29)

This configuration is called a nested controller and is illustrated in Figure 3.4. An

example of one controller parameterizing the reference of a second controller is the

sliding grasp controller described in Section 4.3. The sliding controller displaces con-

tacts by a Cartesian displacement on the surface of an object. The grasp controller

outputs contact displacements. When the sliding controller is parameterized by the

grasp controller, the resulting controller slides contacts toward good grasp configura-

tions.

3.3 Null Space Composite Controllers

The control basis also provides a mechanism for systematically specifying com-

posite controllers derived from multiple primitive closed-loop controllers. Composite

controllers are defined by combining multiple primitive controllers using the subject-to

operator, /.

42

∆∆

x1
φ

1

∆

x2
φ

2

φ2 1φ∆

Σ

xref 2

xref 1

Σ

X1

X 2

e1

e2 X2
Y2

X1 Y1

σ2

σ1

τ1

τ2

∆

∆
∆

Figure 3.5. The mechanics of the “subject-to” operator. In this figure, φ2|σ2
τ2

is
projected into the null space of φ1|σ1

τ1
.

The subject-to operator projects the control gradient of a subordinate controller

into the null space of a superior controller. Let

∇y1φ1 = τ+
1 ∇x1φ1(σ1)

=
∂x1

∂y1

T

∇x1φ1(σ1)

and

∇y2φ2 = τ+
2 ∇x2φ2(σ2)

=
∂x2

∂y2

T

∇x2φ2(σ2)

be control gradients associated with two primitive controllers π1 and π2. In order

to be combined, both control gradients must be computed in the same space. In

order to ensure that this is the case, it is required that the row space of both effector

transforms be the same, i.e. that Y1 = Y2. In this case, the common row space is

43

Y = Y1 = Y2 and the two gradients are ∇yφ1 and ∇yφ2. When ∇yφ2 is projected

into the null space of ∇yφ1, the combined result is:

∇y(φ2 / φ1) ≡ ∇yφ1 +N
(
∇yφ

T
1

)
∇yφ2,

where

N
(
∇yφ

T
1

)
=

(
I − (∇yφ

T
1)#∇yφ

T
1

)
,

and I is the identity matrix. If Y is an n-dimensional space, the null space of ∇yφ1 is

an (n − 1)-dimensional space orthogonal to the direction of steepest descent. In the

subject-to notation, this composite controller is expressed

π2 / π1,

and is illustrated in Figure 3.5. This figure shows two controllers, π1 = φ1|σ1
τ1

and

π2 = φ2|σ2
τ2

, that operate independently up until the control gradients are projected

into the output space. The box labeled φ2 / φ1 implements the null space projection

and the composite controller outputs a combined control gradient of ∇y(φ2 / φ1).

This approach to creating a composite controller using two primitive controllers

can be generalized to k controllers. Let k controllers, πk, . . . , π1, have gradients,

∇yφk . . .∇yφ1. These gradients must all be expressed in the same effector output

space, Y . Assuming numerical priority of the controllers, they may be combined

using

∇y(φk / . . . / φ1) ≡ ∇yφ1 (3.30)

+
[
N

(
∇yφ

T
1

)]
∇yφ2

+


N



∇yφ

T
1

∇yφ
T
2





∇yφ3

44

...

+



N




∇yφ
T
1

...

∇yφ
T
k−1






∇yφk.

In this Equation, the null space of (k − 1) controllers is calculated by concatenating

all control gradients:

N




∇φT
1 (y)

...

∇φT
k−1(y)




= I −




∇φT
1 (y)

...

∇φT
k−1(y)







∇φT
1 (y)

...

∇φT
k−1(y)




. (3.31)

This null space is tangent to all k−1 gradients, ∇yφk−1 . . .∇yφ1. Since each gradient

is a 1-dimensional manifold in the output space, then the dimensionality of the null

space is n− k +1, assuming an n-dimensional output space. The resulting composite

controller executes all k controllers simultaneously, while giving priority to lower

numbered controllers. Using the subject-to notation, this composite controller is

expressed,

πk / . . . / π1. (3.32)

3.4 A Language of Controllers

Force-domain robotics problems are frequently understood to be mechanics prob-

lems where the robot must sense, understand, and ultimately act upon an external

physical world. In contrast, control-based approaches to robotics define the problem

differently and have a different solution space. Rather than assuming that the robot

is capable of unstructured motor activities, control-based approaches assume that all

activity is expressed as sequences or combinations of controllers. Focusing robot in-

45

teractions with the external world in this way redefines the robot control problem as

one of selecting the correct controllers to execute.

The value of this kind of transformation of the robot control problem largely

depends upon the set of controllers that the robot may execute. If the robot is

constrained to execute only a small number of controllers, then the search for a

solution is simplified, but the capabilities of the robot are restricted. If the robot has

access to a large and unstructured set of controllers, then the capabilities of the robot

may be fully represented, but the control problem is no simpler than the original

problem. The control basis approach proposes using a large, but structured, set of

controllers that simplifies the problem representation when used. This section uses a

context-free grammar to characterize the set of controllers that can be defined by the

control basis. The language of this grammar contains the set of all controllers that

may be executed. This language of controllers provides a way to articulate solutions

to robotics problems. Rather than as trajectories in the physical world, solutions may

be specified as sequences of controllers.

3.4.1 A Context-Free Grammar

The set of valid control basis controllers can be described by a context free gram-

mar, Gcb, defined over an alphabet composed of artificial potentials, sensor transforms,

effector transforms, and operators. Let Φ = {φ1, φ2, . . .} be a set of artificial poten-

tials, Σ = {σ1, σ2, . . .}, be a set of sensor transforms, Υ = {τ1, τ2, . . .}, be a set of

effector transforms, and Γ = {γ1, γ2, . . .} be a set of control resources. The context

free grammar, Gcb = 〈V, Ξ, R, S0〉, is defined by the terminals,

Ξ = {Φ ∪ Σ ∪Υ ∪ {/, (,)}}, (3.33)

variables,

V = {S0, Π, P, S, T, L}, (3.34)

46

and production rules, R,

S0 → Π (3.35)

Π → L

Π → L(S)

Π → L(Π)

Π → Π / Π

L → P S
T

P → φ1|φ2| . . . |φ|Φ|
S → S ′(G)

T → T ′(G)

S ′ → σ1|σ2| . . . |σ|Σ|
T ′ → τ1|τ2| . . . |τ|Υ|
G → γ1|γ2| . . . |γ|Γ|,

where S0 is the start symbol. In the first production, S0 → Π, the start symbol yields

the controller variable, Π. The next four productions specify the different ways in

which a controller may be created. A controller may be instantiated by a primitive

controller with zero reference, Π → L, a primitive controller with a reference sensor

transform, Π → L(S), a primitive controller parameterized by another controller as

reference, Π → L(Π), or two controllers that execute in a null space relationship,

Π → Π / Π. The next production, L → P S
T , specifies that a primitive controller

may be instantiated by P S
T , a string that represents an arbitrary parameterization of

a potential function with a sensor transform and effector transform. Although P S
T

is written with a superscript and subscript, it should formally be understood to be

47

a three-character string. The artificial potential may be instantiated by any of the

terminals in Φ. The productions, S → S ′(G) and T → T ′(G) parameterize sensor

and effector transforms with controller resources. Finally, S ′ and T ′ are instantiated

by terminals in Σ and Υ.

The language of this context-free grammar describes a set of controllers that may

be constructed using the control basis. The representation of controllers as strings in a

context free grammar is useful because is allows subsets of controllers to be described

by regular expressions. For example, Ξ∗φi|σj
τk (Ξ∗), describes the set of controllers

that execute φi|σj
τk as the highest priority controller. In another example, Ξ∗φi|ST (Ξ∗),

encodes the set of controllers with a highest-priority controller based on artificial

potential φi. Representing classes of controllers this way will be useful in Section 6.5,

where an approach to controller abstraction is presented.

Recall that the control basis requires the data type of the sensor transform to

match that of the artificial and the effector transform. In addition, if a controller

reference is specified by a sensor transform or another controller, then the data type of

that sensor transform or controller must also match. Finally, if a controller executes in

the null space of another controller, the data type of both controllers must match. The

context-free grammar described above does not enforce this agreement. This problem

is similar to the tense matching problem that arises in natural language processing

where a context-free grammar must encode tense agreement between different parts

of speech. In order to enforce tense agreement, variables can be parameterized by

features that encode tense. A variant of the context free grammar described above

exists that uses features to enforce control basis agreement.

3.4.2 State and Action Representation

Although composite controllers can generate complex robot behaviors, it is fre-

quently the case that a task can be accomplished only by executing a sequence of

48

controllers. This requires a high-level decision-making mechanism that selects con-

trollers to execute based on the robot’s objectives and the current system state.

The set of actions available to the robot is derived from the language of Gcb,

A ⊆ L(Gcb). (3.36)

Note that the set of actions that the robot is allowed to execute, A, may be a subset

of the complete controller language.

The control basis measures system state in terms of the dynamics of the con-

trollers that it defines. A controller’s dynamics are measured in terms of its error,

ε = (φi ◦ σj), and the magnitude of its error gradient, ε̇ =‖ ∇φi ◦ σ ‖, during execu-

tion. This space of controller error and magnitude of controller gradient is analogous

to a phase plane. In general, the path that a controller takes through this space

contains important information regarding the state of the system and its environ-

ment. Instead of considering the entire controller trajectory, this thesis will follow

Huber and characterize the state of a controller in terms of whether or not it has

converged to a low error configuration [29]. The state of the system is represented as

the cross product of the convergence state of each controller. This characterization

of a controller’s state carries less information than a dynamic representation that

incorporates other information regarding the controller’s transient activity, but is a

more compact representation.

The state, therefore, can be represented in the form of a bit vector that asserts

whether active controllers are converged. To determine controller convergence, it is

not necessary to know the effector transform. Let M⊆ Φ×Σ be the set of artificial

potentials and sensors that satisfy typing constraints that are relevant to a particular

robot decision problem. Given (φi, σj) ∈ M, let p((φi, σj)) be an indicator function

that equals one when φi is converged for σj with a low error:

49

p((φi, σj)) =





1 if φi is converged with low error for σj

0 otherwise.
(3.37)

The current state of the robot is defined as the set of artificial potentials and sensors

that are currently converged with low error,

s = {(φi, σj) ⊆M|p((φi, σj)) = 1}. (3.38)

This set is summarized by a bit vector describing the converged pairs,

b(s) = p(m|M|)p(m|M|−1) . . . p(m1), (3.39)

where mi is the ith element of M. At any time, the internal state of the robot system

is summarized by membership in S = 2M. Depending upon the number of artificial

potentials and sensor transforms defined, it may be necessary to “prune” the subset

M. The number of states defined in Equation 3.38 can be limited by eliminating

pairs from M that are known a priori to be irrelevant to the task or as a means of

asserting external guidance.

3.5 Summary

This section has described the control basis approach to defining closed-loop con-

trollers. The most significant characteristic of the control basis is the way it factors

a controller into three components: a sensor transform, an artificial potential func-

tion, and an effector transform. The reference of a control basis controller can be a

constant, a sensor transform, or another controller. Multiple controllers can execute

concurrently by projecting the output of subordinate controllers into the null space of

primary controllers. The set of all controllers can be described by the language of the

50

context-free grammar, Gcb. Complex robot behavior can be expressed by executing

controllers from this language.

51

CHAPTER 4

GRASP CONTROL

Creating force domain behavior requires control processes that optimize manip-

ulator contact configuration based on the forces that can be applied. In the case of

grasping, contact configuration must be optimized for grasp quality measures. If ro-

bust controllers can be defined that converge to good grasp configurations, even over

limited domains of attraction, then these controllers can be sequenced or combined

to create robust behavior over larger domains. This chapter focuses on defining con-

trollers that control grasp quality. Starting with Coelho’s force and moment residual

control primitives, a composite grasp controller is defined that executes both of these

control primitives concurrently [60]. Next, a hybrid position and force controller is

defined that acts in concert with the grasp controller to slide the contacts to good

grasp configurations [61]. Finally, the set of potential grasp controllers is expanded by

allowing controllers to be parameterized by virtual contacts that correspond to contact

groups [58]. Experimental results are presented that demonstrate these controllers

to be a practical and effective way of synthesizing grasps on unmodeled objects in

uncontrolled domains.

4.1 Background

The control-based approach to solving force-domain problems taken in this thesis

rests heavily upon Coelho’s force and moment residual controllers. These controllers

minimize grasp error functions by displacing contacts on the surface of an object

in response to local tactile feedback at the contacts. This section describes different

52

approaches to tactile sensing and a method for displacing contacts on the surface of an

object that acquires tactile feedback, called probing. Next, Coelho’s force residual and

moment residual controllers that displace contacts into quality grasp configurations

based on local tactile feedback are described.

4.1.1 Sensing for Grasp Control

Grasp controllers assume that it is possible to sense local surface geometry in the

neighborhood of each contact. This may be accomplished in a number of ways. For

example, it may be possible to use computer vision to extract the relationship between

object surface and grasp contact [1]. Notice that this vision problem is significantly

easier than the general problem of reconstructing full object geometry. Unfortunately,

it can be difficult to use vision for the purpose of “tactile sensing” without placing

fiducial marks on the fingertips [1]. Even worse, vision cannot be used when the point

of contact is occluded by the hand or the object itself.

A more common approach to tactile sensing is to actually place sensors on the

finger itself. Approaches to tactile sensing have been divided into two categories: “ex-

trinsic contact sensing” (ECS) and “intrinsic contact sensing” (ICS) [75]. In ECS, the

contact region is covered with some type of tactile “skin” that senses applied forces.

Typical examples include force sensing resistors (FSRs) and quantum tunneling com-

posite (QTC). When pressure is applied, the effective resistance of these materials

changes and can be used to sense absolute pressure or a change in pressure. These

materials are typically sandwiched in a contact array that localizes the pressure to

multiple positions on a grid. A single contact location can be calculated by averaging

the reported contact locations [75]. Recent examples of this type of sensing include

the Robonaut “sensor glove” and the fingertips of the Shadow hand [43].

In contrast to ECS, ICS attaches the sensor to internal structural elements on the

finger. The primary example of this approach uses load cells. It is often mechanically

53

feasible to embed a small load cell in the load path between the fingertip and the

rest of the finger. If there are no secondary load paths, this load cell can sense small

forces and torques applied to the fingertip. Notice that force and torque information

does not directly correspond to contact location. However, when it can be assumed

that the sensed load was produced by a single point of contact (or contact region),

Bicchi, Salisbury, and Brock propose an algorithm that calculates the point of contact

(or average contact point) [9]. This approach only produces a unique contact point

when it is known ahead of time that contact can only occur on a convex region

of the finger. This approach to tactile sensing has a long history, starting with

Salisbury [45, 75, 12]. In addition, this type of tactile sensing is used by Dexter, the

UMass bimanual humanoid that is used in most of the experiments of this thesis.

One final approach to ICS worth mentioning uses IR-LEDs. A manipulator

equipped with built-in IR-LEDs can be used to dense the surface normal of an object

when in close proximity. This approach to sensing-for-grasping has been considered

by Teichmann and Mishra [81].

4.1.2 Displacing Grasp Contacts by Probing

In the “probing” approach to contact displacement, the manipulator iteratively

makes light contact with the object, lifts, and displaces the contacts. The contacts

are moved toward the object surface until they lightly touch. Fingertip load cells

measure the load applied to the object. After touching, the manipulator contacts

must be lifted and displaced a short distance along the object surface in the direction

of the negative gradient of the grasp error function.

One way to realize this displacement is to execute a three step sequence: first,

lift all contacts off the object; second, execute the position controller introduced

in Section 3.1.1 to displace the contacts to the goal configuration; third, approach

the object with all contacts along an estimated surface normal. Probably a more

54

principled approach to contact displacement is to use a collision-free motion controller

that treats the object surface like an obstacle [15]. In this approach, the motion

controller lifts the contacts off of the surface in order to avoid colliding with the

object. Contact with the object is re-acquired only when approaching the goal.

4.1.3 Wrench Residual

Roughly speaking, the objective of grasp control is to displace the contacts to-

ward force closure configurations (for more on force closure, see Section 2.2.1). This

is accomplished by minimizing the net force and moment that would be applied by

frictionless contacts applying unit forces when the mass of the object is ignored. In-

tuitively, contact configurations in frictionless equilibrium are those where the fingers

can squeeze the object arbitrarily tightly without generating net forces or torques.

These configurations are good grasps because the robot can increase frictional forces

arbitrarily by squeezing the object. The grasp controller finds these grasps by mini-

mizing the squared frictionless wrench residual, εw = ρT ρ. Recall from Section 2.2.1

that wrench is a 6-dimensional generalized force consisting of force and moment. The

frictionless wrench residual, ρ =
∑k

i=1 wi, is the net wrench applied by k frictionless

point contacts with unit magnitude.

If the grasp controller succeeds in reaching a frictionless zero net wrench config-

uration, the resulting grasp is guaranteed to be force closure. Several researchers,

Ponce [77] for example, have shown that net zero wrench with at least three friction-

less contacts (frictionless equilibrium) is a sufficient condition for force closure when

the frictionless contacts are replaced with point contacts with friction. The same

argument can be made for two-contact frictionless equilibrium when frictionless con-

tacts are replaced with soft contacts. Since real-world contacts usually have friction,

the frictionless equilibrium configurations that grasp controllers find are force closure

configurations in the real world.

55

One approach to grasp control is to differentiate εw = ρT ρ with respect to contact

configuration and to displace grasp contacts accordingly. Unfortunately, εw can have

a number of non-zero local minima even for simple objects. This is because wrench

has both a force component and a moment component. For convex objects, the force

component of wrench error has only one minimal connected component in the contact

configuration space. However, the component of wrench error contributed by the

moment residual can have multiple minima. When both components are combined

naively into a single error measure, the moment component introduces local minima.

This makes the gradient of wrench residual error by itself unsuitable for a grasp

controller potential function.

An alternative is to decompose εw into separate force and moment residual error

functions:

εfr =

(
k∑

i=0

fi

)T (
k∑

i=0

fi

)
, (4.1)

and

εmr =

(
k∑

i=0

ri × fi

)T (
k∑

i=0

ri × fi

)
. (4.2)

In these equations, ri is the location of the ith contact point in an arbitrary object

coordinate frame and fi is a unit vector (a frictionless force) normal to the object

surface applied by the ith contact. By defining the error function in terms of unit

vectors of force, the grasp controller will prefer contact configurations where all con-

tacts apply equal forces. Coelho’s approach avoids minima in the wrench residual

error function by first descending the gradient of the force residual error
∂εfr

∂f
and

subsequently descending the gradient of the moment error ∂εmr

∂m
[12]. The controller

that descends
∂εfr

∂f
“funnels” the contact configuration away from local minima in the

wrench residual error. As long as the moment residual controller does not ascend the

force gradient, this approach will reach zero-wrench configurations.

56

4.1.4 Calculating a Grasp Error Gradient

In order to create controllers that descend the force and moment residual error

functions, it is necessary to express the gradients,
∂εfr

∂f
and ∂εmr

∂m
, in terms of surface

coordinates. This enables the controllers to displace contacts so as to minimize these

functions. In principle, expressing these gradients in surface coordinates requires

information regarding the local surface geometry of the object in the neighborhood of

each contact. Since this information may not be available, Coelho makes a constant

instantaneous radius of curvature assumption in order to calculate the gradient of the

force error function and an infinite plane assumption in order to estimate the gradient

of the moment error function [13]. In particular, as a contact moves over the surface

of the object, net force is assumed to change as if that surface were a unit sphere

tangent to the object surface at the contact point. As a function of object surface

coordinates, (θ, φ), the frictionless force applied by the ith contact is,

f(θi, φi) =




− cos(θi) cos(φi)

− sin(θi) cos(φi)

− sin(φi)




. (4.3)

The gradient with respect to surface coordinates is,

∂f(θi, φi)

∂(θi, φi)
=




sin(θi) cos(φi) cos(θi) sin(φi)

− cos(θi) cos(φi) sin(θi) sin(φi)

0 − cos(φi)




. (4.4)

The gradient of the force residual function (Equation 4.1) can now be expressed in

terms of the object surface coordinates of the ith contact:

∂εfr

∂(θi, φi)
= 2

(
k∑

i=0

fi

)T
∂fi

∂(θi, φi)
. (4.5)

57

Note that the object itself does not need to be a sphere; given an arbitrary contact

displacement, the change in net force applied to the convex object will have the same

sign as it would if the object were a sphere. This allows the force residual controller

to calculate the direction of lower force residual without measuring the local surface

curvature.

The moment residual controller calculates the gradient of net moment as if the

object surface were a plane oriented tangent to the object at the contact point. The

moment generated by such a contact is

m(θi, φi) =




−rθ cos(θi) sin(φi) + rφ sin(θi)

−rθ sin(θi) sin(φi) + rφ cos(θi)

rθ cos(φi)




. (4.6)

In this equation, the angles θi and φi encode the orientation of the plane. The planar

surface coordinates, rθ and rφ, encode contact position on the tangent plane with the

origin at the current contact point. The gradient of this is:

∂m(rθi
, rφi

)

∂(rθi
, rφi

)
=




− cos(θi) sin(φi) sin(θi)

− sin(θi) sin(φi) − cos(θi)

cos(φi) 0




. (4.7)

It is now possible to calculate the gradient of the moment residual in terms of the

surface coordinates of the ith contact, rθ and rφ:

∂εmr

∂(rθi
, rφi

)
= 2

(
k∑

i=0

mi

)T
∂mi

∂(rθi
, rφi

)
. (4.8)

As with the spherical assumption, the planar assumption allows the moment resid-

ual controller to displace contacts in the correct direction without considering local

surface geometry.

58

These two control laws are combined to create C∗, a composite controller that first

executes the force control law to convergence and subsequently executes the moment

control law to convergence. Coelho shows that the C∗ controller converges to optimal

grasp configurations for regular convex objects for 2 and 3 contacts [13].

4.2 Null Space Composition of Force Residual and Moment

Residual

Section 4.1 describes two closed-loop controllers that can be used to displace con-

tacts into quality grasp configurations. These two controllers, πfr and πmr, descend

the force and moment error functions, εfr and εmr respectively (see Equations 4.1

and 4.2). This thesis takes this approach a step further by proposing that πmr exe-

cute in the null space of πfr [60]. This is similar to Coelho’s C∗ controller. However,

since C∗ executes the force and moment residual controllers sequentially, it makes it

difficult to ensure that both error functions are converged when the controller fin-

ishes. While Coelho has shown that the moment residual controller does not ascend

the force residual error function on regular convex objects, this is not true in general.

In contrast, the null space composition approach to executing the force and moment

residual controllers ensures that once the force residual error function is minimized,

the moment controller does not subsequently ascend this function.

In order to execute the moment residual controller in the null space of the force

residual controller, it is necessary to represent the gradients of both controllers in

the same coordinate frame. We will parameterize the surface of an arbitrary closed

convex object using spherical coordinates, (θ, φ)T . The gradient of Coelho’s force

residual controller (Equation 4.5) is already expressed in spherical coordinates. Let

the configuration of the ith contact be ψi = (θi, φi)
T and let ψ = (ψ1, ψ2, . . . , ψk)

T be

the configuration of k contacts. The gradient of the force error function in spherical

coordinates is

59

∂εfr

∂ψ
=

∂εfr

∂f

∂f

∂ψ
, (4.9)

where f = (f1, f2, . . . , fk)
T and fi is the frictionless force applied by the ith contact.

This controller can be encoded using the control basis framework of Section 3.1.

The force residual gradient is ∇fφfr =
∂εfr

∂f

T
. The force residual sensor transform

calculates net frictionless force applied at the contacts. In order to calculate this, it

is first necessary to define the unit normal sensor transform,

σn(Γσ) =
(
nγ1 , . . . ,nγ|Γσ |

)T
, (4.10)

where nγi
is the surface normal at the th contact. Now, the frictionless force residual

can be defined to be the sum of unit surface normals,

σfr(Γσ) =
∑

γi∈Γσ

σn(γi). (4.11)

The effector transform converts the force residual gradient into surface coordinates

for the set of contacts in Γτ :

τfr(Γτ) =

(
∂f

∂ψγ1

, . . . ,
∂f

∂ψγ|Γτ |

)
=

∂f

∂ψΓτ

. (4.12)

By Equation 3.5, the force residual controller, πfr = φfr|σfr(Γσ)

τfr(Γτ) is implemented by

∇ψφfr =
∂f

∂ψΓτ

T

∇fφfr(σfr(Γσ)), (4.13)

where the reference force is taken to be zero. Note Equation 4.9 and 4.13 are the

same.

In order to project the moment residual controller into the null space of the force

residual controller, it is necessary to express both of these gradients in the same

60

coordinates. Note that Equation 4.8 is expressed in surface Cartesian coordinates,

(rθi
, rφi

), not spherical coordinates, (θi, φi). In order to convert, we will use the small

angle assumptions, rθ = rθ and rφ = rφ, where r is the radius of the sphere used by

the force residual controller. Assuming a unit sphere, we get (rθ, rφ) ≈ (θ, φ). The

gradient of the moment residual error function as a function of the position of the ith

contact can be expressed in spherical coordinates,

∂εmr

∂ψ
=

∂εmr

∂m

∂m

∂(θ, φ)
, (4.14)

where m = (m1,m2, . . . ,mk)
T is a vector of the contact moments for k contacts

expressed in the object reference frame and (θ, φ) = ((θ1, φ1), . . . , (θk, φk)) is the

vector of surface coordinates for k contacts.

The moment residual controller is encoded in the control basis framework as fol-

lows. The gradient of the moment residual potential function is ∇mφmr = ∂εmr

∂m

T
. The

moment residual sensor transform uses unit normal and position sensor transforms

as components to calculate the net moment residual among the contacts in Γσ:

σmr(Γσ) =
∑

γi∈Γσ

(σp(γi)× σn(γi)) . (4.15)

The effector transform converts the moment residual gradient into surface coordinates

for the set of controller resources, Γτ ,

τmr(Γτ) =

(
∂m

∂ψγ1

, . . . ,
∂m

∂ψγ|Γτ |

)
=

∂m

∂ψΓτ

. (4.16)

In control basis notation, this controller is πmr = φmr|σmr(Γσ)
τmr(Γτ) , and is implemented by,

∇ψφmr =
∂m

∂ψΓτ

T

∇mφmr(σmr(Γσ)), (4.17)

where the reference moment is zero.

61

Now that the force residual and moment residual controllers have been encoded

in the control basis framework, these two controllers can execute concurrently using

the subject-to operator:

πg|Γσ
Γτ
≡ φmr|σmr(Γσ)

τmr(Γτ) / φfr|σfr(Γσ)

τfr(Γτ) . (4.18)

The equivalence in the above equation denotes that the composite controller is abbre-

viated by πg|Γσ
Γτ

. Note that this requires the sensor transform controller resources for

the moment residual and the force residual controllers to be the same and the effector

controller resources to also be the same. Applying Equation 3.30, the gradient of the

composite controller is:

∇ψ(φmr / φfr) = ∇ψφfr +N (∇ψφT
fr)∇ψφmr (4.19)

where

N (∇ψφT
fr) ≡ I −

(
∇ψφT

fr

)# (
∇ψφT

fr

)

projects column vectors into the null space of ∇ψφT
fr. This composite controller

calculates the gradients of both the force residual and the moment residual in spherical

object surface coordinates. The null space term, N (∇ψφT
fr), projects the gradient of

the moment residual controller into the null space of the gradient of the force residual

controller. The moment residual gradient is stripped of any component that ascends

or descends the force residual error function.

The null space composition of force residual and moment residual controllers has

two advantages over executing these controllers sequentially. First, projecting the

moment residual controller into the null space of the force residual controller prevents

it from ascending the force residual error function. This makes it easier for the

62

composite controller to reach zero wrench residual configurations on arbitrary convex

objects. In addition, executing both controllers concurrently accelerates the grasping

process. When both objectives are compatible, the composite grasp controller can

descend both error functions simultaneously.

4.3 Displacing Grasping Contacts by Sliding

The probing approach to contact displacement described in Section 4.1.2 lifts the

contacts off the object surface and moves them through the air to a new contact

configuration. In the context of grasp control (either the force residual and moment

residual controllers of Section 4.1 or the composite grasp controller of Section 4.2),

each iteration of the grasp controller is associated with a single probe. On each

iteration, the controller reads the tactile data once and makes a single displacement.

The number of probes required to reach a good grasp configuration can be minimized

by making large contact displacements on every probe. However, displacement step

size cannot be increased too much because the system has no prior knowledge of

the shape of the object surface. Since, in our experiments, each tactile probe and

displacement takes an amount of time on the order of at least one second, the number

of probes required to move into a good grasp configuration forms a lower bound on

how quickly grasp controllers can synthesize grasps.

4.3.1 Sliding Contacts

This section addresses this problem by proposing that the grasp controller slide

contacts along the object surface to good grasp configurations [61]. This can be

accomplished using a form of hybrid position-force control where each contact applies

a small force along the inward object surface normal in order to maintain contact

with the object. While maintaining this force, the contacts are displaced along the

local surface tangent in the direction of the negative gradient of the grasp controller.

63

Typically, a hybrid force-position controller specifies orthogonal directions for position

control and force control to operate in. After computing force and position control

errors, these errors are mapped through matrices, Sp and Sf , that project the error

terms into orthogonal spaces. Next, the errors are summed, multiplied by a position

gain and projected into the robot joint space. In order for this controller to function

properly, it is essential that the two constraint matrices, S and S ′, have orthogonal

row spaces. If they do not, position and force error terms will compete with each

other, interfering with both objectives.

Instead of explicitly coding the two constraint matrices, this section uses the

control basis framework to combine force and position objectives. Recall from Sec-

tion 3.1.1 that the position controller, φp|σp(Γσ)
τp(Γτ) (xref), descends a gradient in joint

position space,

∇qφp = τp(Γm)T∇xφp(xref − σp(Γm)), (4.20)

where J+ represents either the transpose or the pseudo-inverse of the Jacobian. Given

an appropriate choice for the position gain (see Section 3.1.1), Kp, this controller

moves the k control resources, Γm = (γ1, . . . , γk), to the vector of reference positions,

xref . The force controller (from Section 3.1.2), φf |σf (Γm)

τf (Γm) (fref), also descends a gradient

in joint position space,

∇qφf = τf (Γm)T∇fφf (fref − σf (Γm)). (4.21)

This controller moves the vector of control resources, Γm, to the vector of reference

forces, fref .

Since these position and force controllers have been formulated in terms of the

control basis framework, they can be combined using the subject-to operator:

φp|σp(Γm)
τp(Γm) (xref) / φf |σf (Γm)

τf (Γm) (fref). (4.22)

64

This controller is implemented using Equation 3.30:

∇q(φp / φf) = ∇qφf +N (∇qφ
T
f)∇qφp. (4.23)

This controller applies the reference force, fref , as a first priority and uses excess

degrees of freedom to move to the reference position, xref . Note that this encoding of

the hybrid controller eliminates the need to manually specify the constraint matrices,

S and S ′. Since the position objective is projected into the null space of the force

objective, the two terms of Equation 4.23 are guaranteed to have orthogonal row

spaces.

The expression of Equation 4.22 can be applied to arbitrary hybrid position-force

control problems. In the case of sliding contacts over a surface, each contact must

apply a small force along the inward object surface normal. Then the force reference

can be expressed, fref = κfσn(Γm), where κf is a constant parameter specifying

the magnitude of the desired force and σn(Γm) is the vector of unit surface normals

defined in Equation 4.10. The sliding contact displacement controller is defined by

substituting this force reference into Equation 4.22:

πs|Γm
Γm

(xref) ≡ φp|σp(Γm)
τp(Γm) (xref) / φf |σf (Γm)

τf (Γm) (κfσn(Γm)). (4.24)

This controller slides the k contacts in Γm toward the vector contact reference posi-

tions encoded in xref . Note that the abbreviation, πs|Γm
Γm

(xref), implicitly encodes the

direction and magnitude of the force controller reference.

4.3.2 Posture Optimization During Sliding

As contacts slide over the object surface, the manipulator posture changes relative

to the object so as to track the desired position. However, in some situations it may

be desirable to maintain a particular posture with respect to the object. For example,

65

Figure 4.1. The beach ball must remain within the workspace of the left hand
contacts as the left hand slides over the ball surface.

Figure 4.1 illustrates Dexter holding a large ball in its right hand. The left hand is

sliding over the ball surface toward the top. In order for Dexter’s left hand to remain

in contact with the ball, it is necessary for the hand to reorient so that the plane of

the palm remains parallel to the object surface. In the case of Figure 4.1, if the hand

orientation does not change, then contact cannot be maintained.

This section proposes executing the joint posture controller of Section 3.1.3 in the

null space of (using the subject-to operator) the force controller in order to maintain a

desired manipulator configuration relative to the object. Recall that the joint posture

controller, φk|σk(Γσ)
τk(Γτ) , servos a subset of the manipulator joints, Γσ, toward a reference

configuration. The composite controller,

φk|σk(Γσ)
τk(Γτ) / φf |σf (Γm)

τf (Γm) (κfσn(Γm)), (4.25)

uses the set of actuated joints, Γτ , to reach a reference posture defined over Γσ.

Without the primary force objective, the joint posture controller would simply move

the joints in Γσ ∩ Γτ so as to realize the desired configuration for the joints in Γσ.

However, since the force objective keeps the manipulator contacts on the surface of the

66

object, the joint posture controller must move the non-optimized joints, Γτ − Γσ, so

as to maintain contact while the joints in Γσ move toward the reference configuration.

In the example shown in Figure 4.1, Γσ might consist of the finger flexion joints on

the left hand and Γτ might include all joints in the left hand and arm. In addition,

suppose that the reference posture, qref , encodes finger flexion joint angles in the

middle of their range. With this assignment to the variables, the composite controller

of Equation 4.25 moves the arm so as to allow the finger flexion joints to reach the

middle of their range without breaking contact with the object.

Integrating Equation 4.25 with the sliding controller of Equation 4.24, we get:

πsq|Γm,Γσ

Γm,Γτ
(xref) ≡ φp|σp(Γm)

τp(Γm) (xref) / φk|σk(Γσ)
τk(Γτ) / φf |σf (Γm)

τf (Γm) (κfσn(Γm)). (4.26)

This controller, denoted by the abbreviation, πsq|Γm,Γσ

Γm,Γτ
(xref), uses the degrees of free-

dom in Γτ to optimize the posture of the joints in Γσ while sliding the contact re-

sources, Γm, toward xref .

4.3.3 Combining Grasping and Sliding

We would like to use this contact sliding controller to displace contacts during

grasping. However, since the sliding controller is built on top of a position controller

that accepts only Cartesian references, the grasp controller must produce contact

displacements in Cartesian coordinates. This can be accomplished by projecting the

grasp displacements onto a plane tangent to the object surface at the point of contact.

A gradient represented in surface coordinates can be projected onto the tangent plane

by multiplying by a Jacobian, ∂ψ
∂x

: ∂ε
∂x

= ∂ε
∂ψ

∂ψ
∂x

. This Jacobian can be approximated

using small angle assumptions:

∂ψ

∂x
=

∂ψ

∂(rθ, rψ)

∂(rθ, rψ)

∂x
(4.27)

67

=




r̂T
θ

r̂T
φ


 ,

where r̂θ and r̂φ are orthogonal basis vectors in the tangent plane. Hence, the force

residual and moment residual effector transforms for Cartesian displacement are:

τfrx(Γτ) =
∂f

∂ψΓτ




r̂T
θ

r̂T
φ


 (4.28)

and

τmrx(Γτ) =
∂m

∂ψΓτ




r̂T
θ

r̂T
φ


 . (4.29)

When these two effector transforms are substituted into the force residual and moment

residual controllers of Section 4.2, the resulting controllers produce displacements in

Cartesian space. The composite grasp controller is:

πgx|Γσ
Γτ

= φmr|σmr(Γσ)
τmrx (Γτ) / φfr|σfr(Γσ)

τfrx (Γτ), (4.30)

where the abbreviation, πgx|Γσ
Γτ

, distinguishes this controller from πg|Γσ
Γτ

.

Now that we have defined a sliding controller and a variant of the composite grasp

controller that produces a gradient in Cartesian space, a controller that slides contacts

toward good grasp configurations can be defined:

πsgx|Γτ
Γτ
≡ πs|Γτ

Γτ

(
πgx|Γσ

Γτ

)
. (4.31)

The main advantage of the sliding approach to grasp control, in contrast to the

probing approach of Section 4.1.2, is that the grasp controller has access to much

more tactile data. Instead of taking one sensory reading per probe, the sliding grasp

controller can read new sensory information as often as needed. Since this grasp

68

controller is constantly getting new data, it can potentially reach a good grasp con-

figuration faster. Instead of being limited by the duration of the average probe, the

speed of the sliding grasp controller is limited by the settle-time of the tactile sensors

and the performance of the force controller. If the tactile sensors can update quickly

and the force controller is able to maintain contact with the object surface, then

the sliding grasp controller can be expected to find good grasp configurations very

quickly.

An important consideration when selecting tactile feedback to use in a sliding

grasp controller is the ability of the sensor to determine the object surface normal in

the presence of high tangential forces. This can be a particular problem with sliding

control because the contacts will inevitably experience tangential forces caused by

friction that opposes the direction of motion. If the contact normal is not isolated

from the tangential components of forces, then the grasp controller will get poor infor-

mation. This is another reason for using the fingertip load cells to determine contact

locations and surface normals. The algorithm for contact localization using load cells

by Bicchi, Salisbury, and Brock is able to cancel out these tangential forces [9].

4.4 Virtual Contacts

Up until this point, the grasp controller has been defined in terms of the force

or moment residual calculated over a set of physical contacts. However, in addition

to considering physical contacts, it is also possible to calculate grasp error functions

with respect to virtual contacts. This idea was originally proposed by Arbib, Iberall,

and Lyons in the context of a computational model of human grasps [3]. Instead of

considering every possible grasp separately, they proposed a few fundamental grasp

types (oppositions) that are parameterized by an appropriate set of contacts or fingers

on the hand. In addition to being parameterized by physical fingers, oppositions can

be parameterized by virtual fingers. A virtual finger is a group of hand surfaces that

69

act together for the purposes of a particular grasp. For example, consider grasping

an object between the thumb pad (the last phalange on the thumb) and the finger

pads (the last phalange on the fingers). The grasp can be formed by using the index

finger independently or by using the index and middle fingers together. When the

index and middle fingers work together to form the grasp, they form a virtual finger

(i.e. a virtual contact.)

4.4.1 Virtual Contacts Comprised of Multiple Physical Contacts

Figure 4.2. A grasp that uses a virtual contact. The two contacts on the left
constitute a virtual contact that opposes the physical contact on the right.

The control basis implementation of the grasp controller provides a quantitative

way to realize virtual fingers. Up until this point, it has been assumed that a set

of controller resources, Γi ⊆ Γ, that parameterize sensor and effector transforms was

comprised of physical contacts. Sensor and effector transforms can be parameterized

by virtual contacts by averaging the values of the sensor or effector transforms applied

to the constituent contacts [58]. Given a sensor transform, σj, and a set of control

70

resources, α ⊆ Γ, the value of the sensor transform for the virtual contact resource, γα,

is the average of the sensor transform evaluated for the constituent contact resources,

σj(γα) =
1

|α|
∑
γl∈α

σj(γl). (4.32)

Hence, the position, force residual, or moment residual of a virtual contact is, re-

spectively, the average position, force residual, or moment residual of the constituent

contacts.

The effector transform for a virtual contact acts on the control point calculated

by the sensor transform parameterized by the virtual contact:

τk(γα) =
∂σj(γα)

∂yk

(4.33)

=
∂

∂yk


 1

|α|
∑
γl∈α

σj(γl)


 .

=
1

|α|
∑
γl∈α

∂σj(γl)

∂yk

=
1

|α|
∑
γl∈α

τk(γl)

(4.34)

By averaging the component Jacobian matrices, Equation 4.34 displaces a control

point located at the average position of the constituent contacts. For example, Fig-

ure 4.2 illustrates a grasp where the two fingertip contacts on the left act as a single

virtual contact that opposes the third contact on the right. Let the physical contact

on the right correspond to the physical contact resource, γ1 ∈ Γ. Let the virtual con-

tact, γα, on the left correspond to the set of physical contact resources, α = {γ2, γ3}.
The force residual sensor and effector transforms for this contact configuration are:

σfr({γ1, γα}) =
1

2
[σfr(γ1) + σfr(γα)]] =

1

2

[
σfr(γ1) +

1

2
(σfr(γ2) + σfr(γ3))

]

71

and

τfr({γ1, γα}) =

(
∂f

∂φγ1

,
∂f

∂φγα

)
=

(
∂f

∂φγ1

,
1

2

(
∂f

∂φγ2

+
∂f

∂φγ3

))
.

The sensor transform calculates the force residual between γ1 and the average of the

constituent contacts, γ2 and γ3. Similarly, the effector transform calculates a Jacobian

transpose for γ1 and γα, where the effector transform of the virtual contact is the

average of that for the two constituent contacts. This effector transform displaces the

virtual contact by the average of the amounts by which it would have displaced the

individual contacts.

In the context of grasping, virtual contacts are an important way to affect the

grasp to which the controller converges. For example, in Figure 4.2, when a grasp

controller utilizes the two fingers on the left as a virtual finger, the result is essentially

a two-contact grasp: an opposition between the two fingers on the left and the finger

on the right. Contrast this with a grasp where all three fingers oppose each other

equally, thus forming an equilateral triangle. The remainder of this thesis will include

many examples of grasp controllers parameterized with virtual fingers. This chapter

combines two of the Barrett hand fingers into a virtual finger, as shown in Figure 4.2.

Chapter 5 describes bimanual grasps where Dexter treats three fingers on the hand

as a single virtual contact and forms two-handed grasps by controlling two virtual

point contacts.

4.4.2 Gravity as a Virtual Contact

In addition to the forces that can applied by a group of physical contacts, the

notion of a virtual finger can also represent forces applied by gravity. This allows

grasps that rely on gravity, such as the platform or hook grasp, to be represented in

a consistent way alongside grasps that rely on physical contact exclusively [40]. As a

virtual contact, γg, gravity must always be understood in relation to an object that

72

is being grasped. It applies a force at the center of mass directed in the negative z

direction of the world frame:

σp(γg) ≡ xCG, (4.35)

σf (γg) ≡




0

0

−mg




, (4.36)

and

σn(γg) ≡




0

0

−1




. (4.37)

The gravity virtual contact cannot parameterize the effector transform.

One complexity that arises when the gravity virtual contact parameterizes a grasp

controller is that it is frequently more practical to synthesize a grasp by moving the

object rather than moving the contacts relative to the object. Instead of displacing

contacts relative to the surface of the object, the grasp controller should rotate the

controllable contact resource (and the entire object along with it) so that the wrench

residual between gravity and the controlled contact resource tends toward zero. Note

that this “rotation” version of the grasp controller assumes that the opposing con-

tact is fixtured to the object. Therefore, this controller can only be used when the

object is already grasped by some combination of contact resources. The subject of

synthesizing grasps while holding an object is discussed in detail in Chapter 5. For

the purposes of the current discussion, assume that the object does not drop while

the contact is rotating into opposition with gravity.

Section 4.2 expressed the force residual and moment residual gradients in terms

of spherical coordinates. Instead of projecting this gradient into Cartesian space, as

in Section 4.3.3, the rotation version of the grasp controller is defined by converting

the gradient into a rotation. Let ∂ψi

∂ri
be the gradient of spherical coordinates with

respect to the ith contact’s orientation, expressed in exponential coordinates. Then

73

the effector transform that projects the force residual error into an angular velocity

for the set of contact resources, Γτ , is

τfrr =
∂f

∂ψΓτ

∂ψΓτ

∂rΓτ

, (4.38)

where ψΓτ =
(
ψ1, . . . , ψ|Γτ |

)T
and rΓτ =

(
r1, . . . , r|Γτ |

)T
are vectors of spherical co-

ordinates and orientations for the contact resources in Γτ . Likewise, the effector

transform that projects the moment residual error into an angular velocity for the

contacts resources, Γτ , is

τmrr =
∂m

∂ψΓτ

∂ψΓτ

∂rΓτ

. (4.39)

Using these rotational effector transforms, a rotational grasp controller can be defined,

πgθ|Γσ
Γτ
≡ φmr|σmr(Γσ)

τmrr (Γτ) / φfr|σfr(Γσ)

τfrr (Γτ). (4.40)

This controller can be used as the reference for the orientation controller of Sec-

tion 3.1.1,

πrgθ|Γσ
Γτ
≡ φr|σr(Γτ)

τr(Γτ)

(
πgθ|Γσ

Γτ

)
. (4.41)

This rotational grasp controller rotates the manipulator so as to oppose the con-

trolled contacts, Γτ with the gravitational virtual contact. If the gravitational con-

tact resources, γg, is not among the contact resources that parameterize the sensor

transform, then the gradient of Equation 4.41 is always zero.

4.5 Experiments

Experiments were conducted that characterize how robustly the sliding grasp con-

troller, πs|Γτ
Γτ

(
πgx|Γσ

Γτ

)
, can synthesize grasps and the conditions under which it will

converge to a good grasp (force closure) configurations. In a series of four experiments,

74

(a) (b) (c)

Figure 4.3. The sliding grasp controller, πs|Γτ
Γτ

(
πgx|Γσ

Γτ

)
, was characterized for these

three objects.

the sliding grasp controller is executed a number of times from different starting con-

figurations in each of four different grasp scenarios. All experiments were conducted

on Dexter, the UMass bimanual humanoid robot described in Appendix C. Grasp

controller performance is characterized for the towel roll, squirt bottle, and detergent

bottle shown in Figure 4.3. Since the grasp controller does not make any prior as-

sumptions about object geometry, orientation, or pose, these experiments accurately

reflect expected performance of the sliding grasp controller in uncontrolled and un-

modeled domains. The results show the sliding grasp controller to be a practical

way of synthesizing grasps in uncontrolled scenarios. The sliding grasp controller

converges to grasp configurations with low force and moment residual errors from

a variety of starting configurations. When a distribution over starting and ending

configurations is calculated, the grasp controller is shown to funnel a large number

of starting configurations toward a small set of good grasp configurations. Our ex-

periments also show the sliding grasp controller to be susceptible to local minima

caused by kinematic limitations of the manipulator. We propose avoiding these local

minima by identifying domains of attraction that enable the grasp controller to find

75

good grasps. Subsequent chapters of this thesis consider ways of ensuring that grasp

controllers start execution within the correct domain of attraction.

4.5.1 Experiment 1: Grasping a Towel Roll Using Two Virtual Fingers

The first experiment characterizes sliding grasp controller performance by using

Dexter to attempt to grasp the vertical towel roll (10cm in diameter and 20cm tall)

shown in Figure 4.3(a) 58 times. In these grasp trials, the sliding grasp controller

began execution from a variety of different manipulator configurations, illustrated

in Figure 4.4(a). On each trial, the sliding grasp controller, πs|{γ1,γ23}
{γ1,γ23}

(
πgx|{γ1,γ23}

{γ1,γ23}
)
,

executed until convergence or until grasp failure as determined by the human monitor.

This controller was parameterized by two contact resources on Dexter’s Barrett hand.

The Barrett hand has three fingers with corresponding contact resources, γ1, γ2, and

γ3. In Experiment 1, contact resources, γ2 and γ3 were combined to form a single

virtual contact, γ23 = {γ2, γ3}. The sliding grasp controller, πs|{γ1,γ23}
{γ1,γ23}

(
πgx|{γ1,γ23}

{γ1,γ23}
)
,

tended toward grasp configurations that opposed γ1 and γ23.

Experiment 1 shows that for the towel roll, the two-finger sliding grasp controller

funnels the robot toward good grasp configurations. Figure 4.4(a) shows the density of

manipulator orientations before executing the grasp controller. The hand orientation

is measured in terms of the line that connects the two virtual contacts. Orientation

is the angle between this line and the towel roll major axis. Figure 4.4 illustrates

the hand in two different orientations. Notice that the grasp controller begins execu-

tion in a variety of orientations. Figure 4.4(b) illustrates the density of manipulator

configurations after grasp controller execution. Notice that the largest peak is near

π/2 radians. This corresponds to the configuration shown in Figure 4.5(a), where

the line formed by the two contacts is perpendicular to the object major axis. Also,

notice that there is a much smaller peak near 0.45 radians. This corresponds to the

76

−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

50

100

150
Orientations at Grasp Start (2 fingers)

Orientation (rad)

D
en

si
ty

 (
p

er
 r

ad
)

(a)

−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

50

100

150

200

250

300
Orientations at Grasp Termination (2 fingers)

Orientation (rad)

D
en

si
ty

 (
p

er
 r

ad
)

(b)

Figure 4.4. Experiment 1 (towel roll, two contacts): the distribution of contact
orientations before, (a), and after, (b), the grasp controller has executed. Orientation
is the angle between a line that passes between the two grasp contacts and the major
axis of the object (see text).

(a) (b)

Figure 4.5. Experiment 1 (towel roll, two contacts): (a) grasp configuration corre-
sponding to a peak in Figure 4.4(b) near an orientation of π/2 radians. (b) configu-
ration corresponding to smaller peak near an orientation of 0.45 radians.

configurations shown in Figure 4.5(b), where one finger is on the top of the object

and the other finger on the side.

77

0 500 1000 1500
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2
Avg Force Trajectory on Successful Trials

Step

A
ve

ra
g

e
F

o
rc

e
E

rr
o

r

(a)

0 500 1000 1500
0

0.5

1

1.5

2

2.5

3
x 10

−3 Avg Moment Trajectory on Successful Trials

Step

A
ve

ra
g

e
M

o
m

en
t

E
rr

o
r

(b)

Figure 4.6. Experiment 1 (towel roll, two contacts): average force residual, (a), and
moment residual, (b), for the grasp trials that terminated near the peak at π/2 in
Figure 4.4(b).

0 500 1000 1500
1.3

1.4

1.5

1.6

1.7

1.8

1.9

2
Avg Force Trajectory on Failed Trials

Step

A
vg

 F
o

rc
e

E
rr

o
r

(a)

0 500 1000 1500
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01
Avg Moment Trajectory on Failed Trials

Step

A
vg

 M
o

m
en

t
E

rr
o

r

(b)

Figure 4.7. Experiment 1 (towel roll, two contacts): average force residual, (a), and
moment residual, (b), for the grasp trials that terminated outside of the peak at π/2
in Figure 4.4(b).

The average force and moment residual error trajectories for the grasp trials that

comprise the peak near π/2 in Figure 4.4(b) are illustrated in Figure 4.6. Figure 4.6(a)

shows the average force residual error while Figure 4.6(b) shows the average moment

residual error. Note that these grasps converge to low force residual and moment

78

residual errors, corresponding to good grasp configurations. The horizontal axis in

both figures is grasp controller iteration. Since the contacts are constantly touching

the object, the grasp controller is able to update approximately once every 20ms

(50Hz). The graphs illustrate that, on average, both force and moment errors converge

in approximately 1000 iterations (20 seconds, not including the time taken to tare

the fingertip load cells.) Notice that the relative priority of the force residual and

the moment residual errors is evident from the figures. On average, force residual

decreases monotonically from the start while moment residual only converges after

force residual converges. At first, in order to reduce force residual, the controller

sacrifices moment residual. Only after force residual converges does the controller

also minimize moment residual.

Figure 4.7 illustrates the average force and moment residual error trajectories

for the grasp trails that did not peak around π/2 in Figure 4.4(b). These plots are

noisier because the average is taken over fewer samples because few grasp trials failed.

Figure 4.7(a) shows that average force residual error never significantly decreases while

Figure 4.7(b) shows that moment residual error actually increases. On these trials, the

grasp controller failed to reach a good grasp configuration. The approximate physical

configuration of the manipulator during these trials is illustrated in Figure 4.5(b).

On these runs, the kinematic limitations of the fingers prevented the two contacts

from reaching all the way around the object before the palm collided with the object.

Since Dexter had no sensing on the palm, trials where the palm collided with the

object were prematurely stopped by the human monitor.

These results show that the sliding grasp controller, πs|{γ1,γ23}
{γ1,γ23}

(
πgx|{γ1,γ23}

{γ1,γ23}
)
, con-

verges to good grasp configurations on a vertical cylinder from a large number of

starting orientations. These good grasp configurations are characterized by low force

residual and moment residual errors. Nevertheless, it is possible for the controller

to fail to reach a good grasp configuration due to the kinematic limitations of the

79

manipulator. In the absence of these limitations (imagine “floating” contacts), the

manipulator can be expected to converge to a good grasp configuration. However, the

kinematics of the manipulator can effectively introduce local minima into the grasp

artificial potential. Subsequent chapters of this thesis study how to start the sliding

grasp controller from configurations where convergence can be expected.

4.5.2 Experiment 2: Grasping a Towel Roll Using Three Virtual Fingers

−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

50

100

150

200

250
Orientations at Grasp Start (3 fingers)

Orientation (rad)

D
en

si
ty

 (
p

er
 r

ad
)

(a)

−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

20

40

60

80

100

120

140
Orientations at Grasp Termination (3 fingers)

Orientation (rad)

D
en

si
ty

 (
p

er
 r

ad
)

(b)

Figure 4.8. Experiment 2 (towel roll, three contacts): the distribution of contact
orientations before, (a), and after, (b), the three-contact grasp controller has executed.
Orientation is the angle between a normal to the plane of the three grasp contacts
and the major axis (see text).

The second experiment tested a three-contact parameterization of the sliding grasp

controller. Dexter executed 61 reaches and grasps on the vertical towel roll shown

in Figure 4.3(a). Figure 4.8(a) shows the density of manipulator orientations before

the grasp controller executed. This figure measures orientation in terms of the plane

of the three contacts. Orientation is the angle between the normal of this plane and

the major axis of the object. Figure 4.8(a) shows that the three-contact sliding grasp

controller executed from a distribution of starting orientations with a strong peak near

80

(a) (b) (c)

Figure 4.9. Manipulator configurations during Experiment 2. (a) shows the ma-
nipulator at a starting configuration near the peak in Figure 4.8(a). (b) shows the
manipulator after the sliding grasp controller has executed and the manipulator has
reached a globally optimal grasp. (c) shows the manipulator after grasp controller
execution has reached a local minimum in the force residual error function.

0 500 1000 1500
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2
Avg Force Trajectory on Successful Trials

Step

A
ve

ra
g

e
F

o
rc

e
E

rr
o

r

(a)

0 500 1000 1500
0

0.002

0.004

0.006

0.008

0.01

0.012
Avg Moment Trajectory on Successful Trials

Step

A
ve

ra
g

e
M

o
m

en
t

E
rr

o
r

(b)

Figure 4.10. Experiment 2 (towel roll, three contacts): average force residual, (a),
and moment residual, (b), for the grasp trials that terminated near the peak at 0 in
Figure 4.4(b).

1 radian. This 1 radian peak corresponds to a starting manipulator configuration like

that shown in Figure 4.9(a).

Figure 4.8(b) shows the density of manipulator orientations after executing the

three-contact sliding grasp controller, πs|{γ1,γ2,γ3}
{γ1,γ2,γ3}

(
πgx|{γ1,γ2,γ3}

{γ1,γ2,γ3}
)
. This controller is

81

0 500 1000 1500
1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9
Avg Force Trajectory on Failed Trials

Step

A
vg

 F
o

rc
e

E
rr

o
r

(a)

0 500 1000 1500
1.2

1.4

1.6

1.8

2

2.2

2.4
x 10

−3 Avg Moment Trajectory on Failed Trials

Step

A
vg

 M
o

m
en

t
E

rr
o

r

(b)

Figure 4.11. Experiment 2 (towel roll, three contacts): average force residual, (a),
and moment residual, (b), for the grasp trials that terminated outside of the peak at
0 in Figure 4.4(b).

parameterized by the three contact resources on each of the three fingers of the Barrett

hand. For more on the Barrett hand, see Appendix C. Figure 4.8(b) shows that the

sliding grasp controller funneled the distribution of manipulator configurations away

from the peak near 1 radian to a peak near 0 radians. This peak corresponds to

good grasp configurations where the Barrett hand is directly above and aligned with

the towel roll, as shown in Figure 4.9(b). In addition, Figure 4.8(b) also shows

that on a significant number of grasp trials, the sliding grasp controller converged

to other orientations between 0.8 and π/2 radians. One of these grasps is shown in

Figure 4.9(c).

Figures 4.10 and 4.11 show the average force residual and moment residual error

functions for grasps that terminated, respectively, in orientations near the 0 radian

peak and between 0.8 and π/2 radians in Figure 4.8(b). Note that the grasps that

terminated near the 0 radian peak converge, on average, to force residual errors be-

low 0.3 Newtons. In contrast, grasps that terminated between 0.8 and π/2 radians

converged to force residual errors closer to 1.55 Newtons. The grasps that terminate

82

near the 0 radian peak are “successful” in the sense that they minimize the contact

wrench residual and, therefore, for a positive coefficient of friction, are force closure

configurations. In this configuration, the robot can resist large perturbing forces by

applying arbitrarily large forces at the three contacts. In contrast, the grasps that

terminate in orientations between 1 and π/2 radians have large net force residuals

because the contact on the top of the cylinder (see Figure 4.9(c)) is not opposed

by either of the other two contacts. Note that even for the grasps that ultimately

fail, the grasp controller minimizes the force residual and moment residual errors.

Interestingly, the moment residual error converged to similarly low values in both

cases. However, the contact configuration shown in Figure 4.9(c) is essentially a local

minimum in the force residual error function. The problem is that, once one of the

three contacts reaches the top of the cylinder, the grasp controller must ascend the

force residual error function in order to move that contact onto the side of the cylin-

der. Viewed from the side, the cylinder is essentially a rectangle. Although floating

contacts without kinematic constraints can grasp a rectangle by moving toward the

corners, in this case, the fingers of the Barrett hand are not long enough to allow this.

Therefore, a substantial number of grasp trials get “caught” in this local minimum

and ultimately terminate with a high grasp error.

The results from Experiment 2 mirror those from Experiment 1. The three-contact

sliding grasp controller, πs|{γ1,γ2,γ3}
{γ1,γ2,γ3}

(
πgx|{γ1,γ2,γ3}

{γ1,γ2,γ3}
)
, funnels the manipulator from a

large number of poor grasp configurations toward good grasps characterized by low

force residual and moment residual errors. Of particular note in this experiment is the

significant number of grasp trials that ended in a local minimum characterized by a

high force residual error. This is a result of the fact that a three-fingered manipulator

can grasp a cylinder in two qualitatively different ways. One way to grasp the cylinder

places all three fingers around the radius of the cylinder. The other way depends on

rounded fingertips: it places one contact on the top of the cylinder and the other

83

two contacts on the opposite corners, as if the robot were grasping a rectangle with

three fingers. In the grasp trials that failed to reach a low force residual error, the

controller got “caught” attempting to reach the “rectangle” grasp. Although this

grasp is feasible in principle, kinematic limitations (to say nothing of the table the

object is resting on) prevent this approach from succeeding.

4.5.3 Experiments 3 and 4: Grasping a Squirt Bottle and a Detergent

Bottle

−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

10

20

30

40

50

60

70

80

90
Orientations at Grasp Start

Orientation (rad)

D
en

si
ty

 (
p

er
 r

ad
)

(a)

−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

10

20

30

40

50

60

70

80

90

100
Orientations at Grasp Termination

Orientation (rad)

D
en

si
ty

 (
p

er
 r

ad
)

(b)

Figure 4.12. Experiment 3 (squirt bottle): the distribution of contact orientations
before, (a), and after, (b), the grasp controller has executed.

Experiments 3 and 4 characterize the sliding grasp controller on a squirt bottle

and a detergent bottle, respectively, as shown in Figures 4.3(b) and 4.3(c). The exper-

imental procedure for these objects is roughly the same as in the earlier experiments.

On each trial, Dexter reached toward the object and executed the two-contact sliding

grasp controller, πs|{γ1,γ23}
{γ1,γ23}

(
πgx|{γ1,γ23}

{γ1,γ23}
)
. In Experiment 3, Dexter executed 28 grasps

of the squirt bottle. In Experiment 4, Dexter executed 31 grasps of the detergent

bottle. As in Experiment 1, this controller is parameterized by a physical contact

resource, γ1, and a virtual contact resource, γ23 = {γ2, γ3}. Figures 4.12 and 4.13

84

−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

10

20

30

40

50

60

70

80

90
Orientations at Grasp Start

Orientation (rad)

D
en

si
ty

 (
p

er
 r

ad
)

(a)

−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

10

20

30

40

50

60

70

80

90

100
Orientations at Grasp Termination

Orientation (rad)

D
en

si
ty

 (
p

er
 r

ad
)

(b)

Figure 4.13. Experiment 4 (detergent bottle): the distribution of contact orienta-
tions before, (a), and after, (b), the grasp controller has executed.

0 500 1000 1500
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65
Avg Force Trajectory on Successful Trials

Step

A
ve

ra
g

e
F

o
rc

e
E

rr
o

r

(a)

0 500 1000 1500
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
x 10

−3 Avg Moment Trajectory on Successful Trials

Step

A
ve

ra
g

e
M

o
m

en
t

E
rr

o
r

(b)

Figure 4.14. Experiment 3 (squirt bottle): average force residual, (a), and moment
residual, (b), for the grasp trials that terminated near the peak at π/2 in Figure 4.4(b).

illustrate the manipulator configurations before and after executing the grasp con-

troller for the squirt bottle and the detergent bottle, respectively. As in Experiment

1, orientation is measured to be the angle between the object major axis and the line

connecting the two virtual contacts. Figures 4.12 and 4.13 show that in both experi-

ments, the sliding grasp controller starts in a range of configurations and funnels the

85

0 500 1000 1500
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75
Avg Force Trajectory on Successful Trials

Step

A
ve

ra
g

e
F

o
rc

e
E

rr
o

r

(a)

0 500 1000 1500
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4
x 10

−3 Avg Moment Trajectory on Successful Trials

Step

A
ve

ra
g

e
M

o
m

en
t

E
rr

o
r

(b)

Figure 4.15. Experiment 4 (detergent bottle): average force residual, (a), and
moment residual, (b), for the grasp trials that terminated near the peak at π/2 in
Figure 4.4(b).

manipulator toward configurations where it is approximately perpendicular to the

major axis of the object. Average grasp controller performance on both objects is

illustrated in Figures 4.14 and 4.15.

In contrast to Figures 4.4(b) and 4.8(b), the density functions in Figures 4.12(b)

and 4.13(b) have only one mode. This indicates that for the squirt bottle and the

detergent bottle, the sliding grasp controller always converged to a single range of

configurations. Therefore, instead of plotting average force residual and moment

residual for different grasp outcomes, Figures 4.14 and 4.15 are averaged over all

grasp trials. These averages show that the sliding grasp controller converges to low

wrench residual configurations for both objects. These are good grasp configurations

because the manipulator is able to resist large perturbation forces by squeezing the

object arbitrarily tightly.

Experiment 3 and 4 show that the sliding grasp controller, πs|{γ1,γ23}
{γ1,γ23}

(
πgx|{γ1,γ23}

{γ1,γ23}
)
,

can be used to grasp objects used in everyday environments. Although the controller

had no prior knowledge regarding the geometry of either the squirt bottle or the

86

detergent bottle, it is shown to effectively funnel the manipulator to good grasp

configurations. In fact, as a result of the narrow profile of these objects, the controller

never gets caught in kinematically-induced local minima.

4.6 Summary

This chapter proposes several composite grasp controllers based on Coelho’s force

residual and moment residual controllers. First, a composite controller is proposed

that executes the moment residual controller in the null space of the force residual

controller. This composite controller is more robust and faster than executing ei-

ther of the constituent controllers separately. Next, a controller is proposed that

concurrently executes a hybrid force and position controller and a grasp controller.

The hybrid force-position controller slides the grasp contacts over the surface of the

object toward good grasp configurations under the direction of grasp control. The

problem of kinematic posture optimization during grasping is also considered. In

addition, this chapter expands the set of contact resources by proposing that grasp

controllers be parameterized by virtual contacts. A virtual contact combines sensory

information from multiple physical contacts in order to create what, for the grasp

controller, is a single logical contact. These controllers are characterized in a series

of experiments where Dexter, the UMass bimanual humanoid, grasps an unmodeled

cylinder, squirt bottle, and detergent bottle using two and three fingers. Although it

is possible for the controller to get caught in local minima, the results show that the

sliding grasp controller effectively funnels the manipulator to good grasp configura-

tions from a range of starting configurations. One way to avoid getting caught in a

local minimum is to ensure that the manipulator is the domain of attraction of a good

grasp configuration before executing the grasp controller. Chapters 6 and 7 pursue

this idea using schema structured learning framework. In these chapters, the robot

87

autonomously learns which instantiations of a reach controller are likely to deliver

the system to configurations where the grasp controller converges to a good grasp.

88

CHAPTER 5

DEXTEROUS MANIPULATION USING GRASP
CONTROLLERS

The control basis framework for grasping described in Chapter 4 formulates grasp

synthesis as a search for a successful sequence or combination of controllers. This

approach offers to grasp synthesis many of the advantages that behavior-based ap-

proaches have in mobile robotics [4]. The control basis approach to grasp synthesis

is robust to perturbations and imperfect sensory information because the underlying

controllers are robust. Sophisticated grasping behavior can be created by combining

simpler control primitives. This chapter takes this idea a step further by encoding

statically-stable dexterous manipulation as a sequence of grasp controllers. Previous

researchers have noted that statically-stable dexterous manipulation can be repre-

sented as a sequence of grasps [76]. However, this method of structuring the problem

is most often used during a planning stage where a hand trajectory is solved for in

geometrical terms.

Leveraging the work of Chapter 4, this chapter represents dexterous manipulation

as a sequence of grasp controllers that lead the system to statically-stable grasps [61].

Force controllers maintain grasp constraints during manipulation. Executing in the

null space of these constraints, grasp controllers lead the system to new grasp con-

figurations. The set of potential manipulation behavior is represented as a Markov

Decision Process over grasp closure conditions. Autonomous learning techniques such

as reinforcement learning are used to select a sequence of controllers that accomplishes

manipulation objectives. Because dexterous manipulation is realized as a sequence

of grasp controllers, it is not necessary to know the exact object geometry a priori.

89

Also, because the robot learns practical control sequences from experience, an analy-

sis of finger workspace limits, kinematic limitations, or finger gaiting strategies is not

necessary. This approach enables the robot to learn a sequence of controllers that

accomplishes the manipulation objective from experience.

5.1 Related Work

The problem of manipulating an object with a dexterous robot hand has been

an active area of research for at least three decades. One approach to the problem

that has received considerable attention treats dexterous manipulation as a planning

problem. In contrast to grasping, where it is only necessary to calculate a contact

configuration, dexterous manipulation requires the planner to calculate a position or

force trajectory that has the desired results. Another approach to generating robot

manipulation behavior is based on control primitives. Approaches like this typically

propose a set of force or position-based primitives that can be combined to solve

complex manipulation problems.

Of fundamental importance to multi-fingered manipulation is the use of the grasp

map (defined in Section 2.2.1) to calculate the finger velocities that correspond to

desired object motion. Recall that the grasp map is a matrix that projects a vector

of contact wrenches, f , onto a net wrench experienced by the object. By equating

the power input and power output, it is possible to calculate the velocity equivalent

of this relationship,

GTv = ẋ, (5.1)

where v is the object twist (generalized velocity) and ẋ is a vector of finger veloci-

ties [45]. This equation gives a precise way to control the object position by moving

the contacts, assuming that the contacts are fixed to the object surface.

In an early approach to manipulation where contacts executed a continuous ma-

nipulation gait, Fearing analyzed the passive motion of a grasped object as a function

90

of contact compliance, the angle between opposing surfaces, and the Coulomb coeffi-

cient of friction [23]. A three-fingered dexterous manipulation strategy was developed

that relied on passive compliance to stabilize the object. Hong et al. considered dex-

terous manipulation in the general case and gave existence proofs for three- and

four-fingered gaits in the plane [28]. They showed that such finger gaits exist for ar-

bitrary planar objects when the “fingers” are assumed to have no volume and finger

workspace constraints are ignored.

In planning-based approaches to dexterous manipulation, feasible configurations

of the hand/object system are modeled and a path is planned through this space. In

one example of this approach, Trinkle, Ram, and Farahat consider the problem of

manipulating a slippery planar object using two one-degree of freedom “fingers” [82].

They identify “first-order stability cells” (FS-cells) in the hand/object configuration

space where the object can be held in stable equilibrium. A graph is defined by

vertices corresponding to FS-cells. Two vertices are connected by an edge when the

corresponding FS-cells are connected in the underlying configuration space. Planning

occurs in the graph and the solution is translated into a configuration space trajectory.

In another example of a planning-based approach to manipulation, Rus identifies and

characterizes finger tracking, a manipulation strategy where some of the fingers hold-

ing an object are held fixed while others move [70]. The moving finger induces a

predictable and robust motion of the manipulated object. The manipulation planner

finds a sequence of such finger tracking motions that results in the desired object

motion. In another planning-based approach, Han and Trinkle focus on three-finger

manipulation of a sphere in three dimensions using round fingertips [27]. They use

the following basic strategy. First, two of the fingers roll toward an opposition grasp

so that the third finger can be removed. Second, one of two finger-gaiting strategies

is used two move the third finger into a new two-finger grasp configuration. The

contact trajectories for both of these motions are computed and used to parameterize

91

controllers that implement the motion. Sudsang and Phoka take a related approach

to manipulating a polygon using four fingers [76]. They define a “switching graph”

where the vertices correspond to regions of configuration space (“focus cells”) where

equilibrium grasps are possible. Edges encode the underlying connectivity in the

configuration space. After searching this graph for a manipulation sequence that ac-

complished desired objectives, the resulting plan is translated into finger trajectories.

In contrast to planning techniques where the entire manipulation trajectory is de-

termined ahead of time, dexterous manipulation behavior has also been represented

as sequences of sub-goals by combining low-level manipulation primitives. If the prim-

itives are well-defined and robust, then manipulation planning is simplified because is

occurs in the space of primitives rather than the configuration space. In one example

of this approach, Michelman and Allen propose primitives that implement transla-

tion and rotation using two and three fingers [46]. The primitives are parameterized

by object size and the velocity of motion. Based on a contact workspace analysis

before and after primitives execute, the robot determines which primitives can be

sequenced. A related manipulation strategy is that of Fuentes and Nelson [25]. They

propose manipulation of an object held in a four-finger grasp by moving a tetrahedron

that describes position objectives of the four fingers. Compliance of the hand main-

tains a grasp while the finger position references change. In a different example of

primitive-based manipulation, Farooqi et al. propose two rotation primitives, pivoting

and rotation, that can be combined to rotate an object along different axes [21]. Dur-

ing rotation, tactile sensors and a laser range finder monitor manipulation progress.

If position errors accumulate, then special error recovery strategies move the system

back toward a nominal configuration.

A key distinction between the work described above and the approach taken in

this chapter relates to the space in which manipulation planning (or learning) takes

place. In the above approaches, manipulation behavior is summarized as a geometrical

92

trajectory which is tracked by a position or velocity controller. During tracking of

the position trajectory, the properties that were used to judge the quality of the

grasp are no longer considered. All relevant force domain knowledge is assumed to

be summarized by the motion trajectory. In contrast, this chapter’s approach uses

grasp controllers that move contacts toward grasp configurations without specifying

an explicit trajectory.

This chapter’s approach to manipulation builds on work by Huber and Grupen

where walking and manipulation gaits are represented as sequences of controllers [30].

In that work, quadrupedal walking gaits were created by sequencing position con-

trollers, kinematic controllers, and force controllers derived from a control basis. By

representing the space of possible walking behavior as a Markov Decision Process,

Huber and Grupen were able to learn to sequence controllers autonomously so as

to create walking behavior. The policy learned on the walking platform was shown

to generalize to the four-fingered Utah-MIT hand. This chapter extends Huber and

Grupen’s work by explicitly framing the manipulation problem in terms of grasp con-

trollers and grasp constraints. Grasp controllers and grasp force controllers maintain

the grasp on an object during manipulation. This chapter proposes transitioning to

new grasp configurations by executing new grasp controllers in the null space of the

controllers that maintain the current grasp. As Huber and Grupen have shown, when

manipulation behavior is represented in terms of the control basis, it is possible to

use standard reinforcement learning techniques to learn manipulation behavior. In a

case study with Dexter, this chapter shows that this approach can be used to learn

manipulation behavior such as a rotation gait through constrained trial and error. In

addition, the case study shows that this approach allows a robot to learn to maintain

a grasp while transporting an object to different places in the workspace.

93

5.2 Maintaining Wrench Closure Constraints

In order to hold an object, it must be squeezed by applying internal forces at

the manipulator contacts. Recall from Section 2.2.1 that the grasp map, G, relates

contact forces to the forces experienced by the object. The null space of the grasp

map is the space of contact forces that result in zero change in applied net wrench.

These forces, called “internal forces,” can be used to hold an object, as long as the

constituent contact forces lie inside their respective friction cones [45]. If a contact

force lies outside its friction cone, the contact will slide. Many approaches exist for

calculating the “best” contact force configuration, including one approach that uses

linear programming to maximize the distance of contact forces from friction cone

boundaries [36]. Although calculating an optimal set of grasp forces requires a full

analysis of the possible internal forces, many good grasp force configurations are

available when the contacts are well positioned. This section introduces a grasp force

controller that applies equilibrium contact forces directed toward the contact centroid.

This approach works well when preceeded by a grasp controller that positions the

contacts in frictionless equilibrium.

1

x2

xc

x3

x

Figure 5.1. Illustration of forces applied by the grasp force controller.

The grasp force controller applies a force at each contact in the direction of the

contact position centroid, as illustrated in Figure 5.1. The forces are proportional to

the distance from the contact centroid. This simple approach results in an equilibrium

94

grasp. Let Γ be a set of k contacts. Then the contact centroid is xc = 1
|Γ|

∑
γi∈Γ xγi

.

The net force applied by the contacts is

f =
∑

γi∈Γ

κgf (xc − xγi
) (5.2)

= κgf


|Γ|xc −

∑

γi∈Γ

xγi




= 0,

where κgf is the constant of proportionality. The net moment is

m =
∑

γi∈Γ

(xγi
× fγi

) (5.3)

=
∑

γi∈Γ

(xγi
× κgf (xc − xγi

))

= κgf

∑

γi∈Γ

(xγi
× xc)

= 0,

assuming (without loss of generality) that the contact centroid is at the origin. No-

tice that, in the presence of friction, this equilibrium grasp satisfies the conditions for

force closure as long as the forces applied at the contacts remain within their respec-

tive friction cones. Since the grasp controller is attracted to frictionless equilibrium

configurations, maintaining grasp forces this way will work as long as the object does

not shift significantly from the grasp found by the grasp controller.

The grasp force controller holds an object by applying reference forces directed

toward the contact centroid in proportion to the distance from the centroid. This

reference force is

σc(Γm) =




σc(Γm)1

σc(Γm)2

...

σc(Γm)|Γm|




, (5.4)

95

where

σc(Γm)j = κgf


 1

|Γm|
∑

γi∈Γm

σp(γi)− σp(γj)


 . (5.5)

In this equation, 1
|Γm|

∑
γi∈Γm

σp(γi) is the centroid of the contacts and κgf is a scalar

that specifies the magnitude of the holding force. Parameterized by this reference

force, the force controller of Section 3.1.2 is

φf |σf (Γm)

τf (Γm) (σc(Γm)) . (5.6)

One difficulty with this implementation of the force controller is that the effector

transform of Equation 3.19 assumes that all contact forces are expressed in the base

reference frame. However, since the object is not fixed to the base frame, the forces

applied to the object should be understood relative to the object. Since the effector

transform of Equation 3.19 assumes that forces are referenced to the base frame, the

null space of this controller excludes all coordinated displacements of the contacts,

even those that would not change contact forces. In order to “expand” this null space

to include coordinated object motion, a new effector transform is defined,

τgf (Γm) = K−1
j

(
oJγ1 , . . . ,

o Jγ|Γm|

)
, (5.7)

where oJγi
is the manipulator Jacobian for contact resource, γi, in the reference frame,

o, of the object. The resulting force controller,

πgf |Γm
Γm
≡ φf |σf (Γm)

τgf (Γm) (σc(Γm)) . (5.8)

holds an object by applying grasping forces.

The null space of the grasp force controller describes a manifold of contact con-

figurations that maintain the grasp. Controllers that execute within the null space of

96

(a) (b) (c)

Figure 5.2. The results of executing three different controllers in the null space

of the grasp force controller, φf |σf (Γσ)

τgf (Γτ) (σc(Γ)) (a) shows Dexter’s configuration after

executing a position controller, φp|σp(Γσ)
τp(Γτ) (xref), in the null space. (b) shows the results

of executing a kinematic posture controller, φk|σk(Γσ)
τk(Γτ) , in the null space. (c) shows the

results of executing a different grasp controller, φr|σ(Γτ)
τ(Γτ)

(
πgθ|Γσ

Γτ

)
, in the null space.

the grasp force controller are attractor wells on this manifold. For example, when the

position controller of Section 3.1.1 executes in this null space, the resulting controller,

πtrans|Γm
Γm
≡ φp|σp(Γm)

τp(Γm) (xref) / πgf |Γm
Γm

, (5.9)

displaces the grasped object to the position xref while maintaining the grasp. This is

illustrated in Figure 5.2(a), where Dexter has just translated a beach ball to a position

on its far left. When the kinematic posture controller of Section 3.1.3 executes in the

null space of the grasp force controller, the resulting controller,

φk|σk(Γk)
τk(Γk) / πgf |Γm

Γm
, (5.10)

attempts to reach a reference manipulator posture without dropping the ball. Fig-

ure 5.2(b) illustrates the results of executing this controller for a reference posture

that maximizes the distance from joint limits. When a subordinate grasp controller

executes in the null space of the grasp force controller,

97

Step Controller

1 πwc|Γ1σ
Γ1τ

2 πgf |Γ1σ
Γ1τ

3 πwc|Γ2σ
Γ2τ

/ πgf |Γ1σ
Γ1τ

4 πgf |Γ2σ
Γ2τ

/ πgf |Γ1σ
Γ1τ

5 πwc|Γ3σ
Γ3τ

/ πgf |Γ2σ
Γ2τ

Table 5.1. This sequence of controllers first grasps and holds the object using the
contact resources, Γ1σ (steps 1 and 2). Subsequently, the system transitions to a
grasp that uses Γ2σ (steps 3 and 4), and finally transitions to a grasp that uses the
resources in Γ3σ (step 5).

πrgθ|Γσ
Γτ

/ πgf |Γm
Γm

, (5.11)

or

πsgx|Γσ
Γτ

/ πgf |Γm
Γm

, (5.12)

the system is attracted to configurations that satisfy the subordinate grasp objective

while remaining on the manifold of configurations that maintain the existing grasp

forces. Equation 5.11 rotates the contact resources, Γτ , into opposition with gravity

while holding the object. Equation 5.12 slides the contacts Γτ into a grasp configura-

tion while holding the object. The effect of execution Equation 5.11 is illustrated in

Figure 5.2(c), where Dexter has transitioned to a grasp where it can support the ball

using its left hand in opposition to gravity. Note that, in this configuration, Dexter

grasps the ball in two ways. First, Dexter continues to grasp the ball between its left

and right hands. Second, Dexter has moved to a grasp configuration that simultane-

ously opposes the left hand against gravity. In this configuration, either one of the

existing grasps can be discontinued, if need be, in service to the task.

5.3 Dexterous Manipulation as a Sequence of Grasps

This method of executing grasp controllers in the null space of grasp force con-

trollers can be used to create dexterous manipulation behavior that transitions through

98

an arbitrarily long sequence of statically-stable grasps citeplatt04. Instead of referenc-

ing specific grasp and grasp force controllers, this section will develop an approach to

manipulation using “generalized” grasp and grasp force controllers, πwc|Γσ
Γτ

and πgf |Γσ
Γτ

.

The grasp controller, πwc|Γσ
Γτ

, might be implemented by either the sliding grasp con-

troller of Equation 4.31 or the rotation grasp controller of Equation 4.41. The grasp

force controller, πgf |Γσ
Γτ

, might be implemented by Equation 5.8.

The sequence of controllers shown in Table 5.1 illustrates a control sequence that

transitions through three grasps. In the first step, the robot grasps the object (i.e.

the contacts are positioned so as to be able to hold the object) using the Γ1σ contact

resources. In the second step, the robot exerts wrench closure grasp forces on the

object by applying an internal force at the Γ1σ set of contacts. After convergence, the

robot has grasped and is holding the object. In the third step, the system transitions

to a second grasp configuration formed using the Γ2σ contacts. In the fourth step,

the robot holds the object using the Γ2σ contact resources. At this point, the robot is

simultaneously holding the object using the contact sets Γ1σ and Γ2σ. It can release

either grasp without dropping the object. In step five, the robot releases the grasp

that used the Γ1σ contact resources, and moves the contacts toward a third grasp,

using a new set of contact resources, Γ3σ.

Notice that this approach to manipulation can only be used when multiple com-

patible grasps are available. Two grasps are compatible for a particular object if that

object can be grasped using both grasps simultaneously. This concept extends to

grasp controllers. If it is possible for two grasp controllers to be converged simulta-

neously, then they are compatible. If two grasp controllers are not compatible, then

there are no common contact configurations and the wrench closure constraints of the

first grasp controller will prevent the second grasp controller from achieving its objec-

tive. Manipulation behavior constructed by sequencing grasp controllers and grasp

force controllers can be checked for feasibility by verifying that all pairs of sequential

99

grasp controllers in the sequence are compatible. This requirement for pairwise com-

patible grasp controllers is not a deficiency of the approach. It reflects a necessary

condition for statically stable manipulation: that there must always be a path of

statically stable contact configurations between any two points on the manipulation

trajectory.

Reasons why two grasps might be incompatible include: workspace or kinematic

limitations of the manipulator, object or obstacles that interfere with grasp formation,

and a conflict in contact resources exists that prevents both grasps from simultane-

ously being formed. Note that this last point does not preclude two compatible grasps

from sharing common contact resources. For example, Huber implements a four-finger

manipulation gait that always holds the object using three of the four fingers while

moving the fourth finger to a new three-finger grasp [29]. In this manipulation gait,

compatible three-finger grasps share two of the three fingers in common. In Fig-

ure 5.2(c), Dexter’s right hand is a common grasp resource that contributes to two

grasps: wrench closure with the force of gravity and with the contact force from the

left hand.

In addition to being compatible, this chapter’s approach to manipulation also

requires sequential grasps to satisfy funneling constraints [11]. The configuration of

the robot must be within the domain of attraction of every new grasp controller that

executes. This condition can be guaranteed by characterizing the domain of attraction

for each grasp controller analytically. If the last grasp controller delivers the system

to a configuration outside of the domain of attraction of the next grasp controller,

then executing the new grasp controller can cause the system to fall into an effective

local minimum caused by joint limits. Rather than analytically characterizing the

domains of attraction of all potential grasp controllers, the next section investigates

the application of machine learning techniques to learn the sequences of controllers

that satisfy funneling constraints autonomously.

100

Controller Description

πwc|Γ1σ
Γ1τ

grasp using contact resources, Γ1σ

πgf |Γ1σ
Γ1τ

grasp force using contact resources, Γ1σ

πwc|Γ2σ
Γ2τ

grasp using contact resources, Γ2σ

πgf |Γ2σ
Γ2τ

grasp force using contact resources, Γ2σ

πwc|Γ3σ
Γ3τ

grasp using contact resources, Γ3σ

πgf |Γ3σ
Γ3τ

grasp force using contact resources, Γ3σ

Table 5.2. Basis controllers for a manipulation task involving three sets of contact
resources, Γ1σ, Γ2σ, and Γ3σ.

5.4 Manipulation as a Markov Decision Process

While Table 5.1 illustrates one possible sequence of controllers, there are many

alternative manipulation sequences that can be created from the same set of basis

controllers. For any given set of controllers, the set of all derivable behaviors can be

represented as a Markov Decision Process (MDP). Recall that an MDP is a transition

function and reward structure defined over a set of states and actions. In the con-

trol basis framework, controllers correspond to actions and the status of converged

controllers corresponds to states. When the manipulation problem is expressed as

an MDP, machine learning methods such as reinforcement learning (RL) can be used

to find a manipulation sequence that accomplishes a desired objective. The objec-

tive must be encoded as the reward function on the MDP. RL solves for a policy

that optimally accomplishes this objective through a trial-and-error learning process.

This is the approach taken by Huber and Coelho who, respectively, represent the

space of possible quadrupedal walking behavior and grasp synthesis behavior as an

MDP [29, 12]. They use reinforcement learning (RL) to learn policies that achieve

desired walking and grasping goals.

Section 5.4 outlines a state and action representation based on control basis con-

trollers that can be used to encode the space of derivable control policies as an MDP.

Consider the case where six controllers exist that can grasp and hold an object using

101

Controller Description

πwc|Γ2σ
Γ2τ

/ πgf |Γ1σ
Γ1τ

synthesize grasp for Γ2σ while holding using Γ1σ

πwc|Γ3σ
Γ3τ

/ πgf |Γ1σ
Γ1τ

synthesize grasp for Γ3σ while holding using Γ1σ

πwc|Γ1σ
Γ1τ

/ πgf |Γ2σ
Γ2τ

synthesize grasp for Γ1σ while holding using Γ2σ

πwc|Γ3σ
Γ3τ

/ πgf |Γ2σ
Γ2τ

synthesize grasp for Γ3σ while holding using Γ2σ

πwc|Γ2σ
Γ2τ

/ πgf |Γ3σ
Γ3τ

synthesize grasp for Γ2σ while holding using Γ3σ

πwc|Γ1σ
Γ1τ

/ πgf |Γ3σ
Γ3τ

synthesize grasp for Γ1σ while holding using Γ3σ

πgf |Γ2σ
Γ2τ

/ πgf |Γ1σ
Γ1τ

hold using Γ2σ while holding using Γ1σ

πgf |Γ3σ
Γ3τ

/ πgf |Γ1σ
Γ1τ

hold using Γ3σ while holding using Γ1σ

πgf |Γ1σ
Γ1τ

/ πgf |Γ2σ
Γ2τ

hold using Γ1σ while holding using Γ2σ

πgf |Γ3σ
Γ3τ

/ πgf |Γ2σ
Γ2τ

hold using Γ3σ while holding using Γ2σ

πgf |Γ2σ
Γ2τ

/ πgf |Γ3σ
Γ3τ

hold using Γ2σ while holding using Γ3σ

πgf |Γ1σ
Γ1τ

/ πgf |Γ3σ
Γ3τ

hold using Γ1σ while holding using Γ3σ

Table 5.3. Actions derived from basis controllers for manipulation tasks involving
sets of contact resources, Γ1σ, Γ2σ, and Γ3σ.

three different sets of contact resources, Γ1σ, Γ2σ, and Γ3σ. If actions are derived only

from composite pairs of basis controllers, then a maximum of 26 controllers can be

formed. However, in order to not drop the object, at least one grasp force controller

must be active at all times. This constrains the number of possible controllers to the

twelve shown in Table 5.3. A state representation that can be derived from the six

basis controllers in Table 5.2 is shown in Table 5.4. This representation encodes the

convergence status of grasp and grasp force controllers for the three sets of contact

resources. This state is encoded as a bit vector. For example, (000011), encodes

the situation when both φg|σg(Γ1σ) and φf |σf (Γ1σ)(σc(Γ1)) are converged, i.e. when a

good grasp exists among the contact set, Γ1σ, and these contacts are used to hold the

object.

Figure 5.3 illustrates an MDP based on the state and action representation of Ta-

bles 5.4 and 5.3. The state space of this MDP includes all derivable states where an

object is held using one or two (out of the three total) contact sets. The arcs in Fig-

ure 5.3 represent the existence of controllers (i.e. actions) that transition the system

102

Bit Controller Description

000001 φg|σg(Γ1σ) Grasp using Γ1σ

000010 φf |σf (Γ1σ)(σc(Γ1σ)) Grasp force using Γ1σ

000100 φg|σg(Γ2σ) Grasp using Γ2σ

001000 φf |σf (Γ2σ)(σc(Γ2σ)) Grasp force using Γ2σ

010000 φg|σg(Γ3σ) Grasp using Γ3σ

100000 φf |σf (Γ3σ)(σc(Γ3σ)) Grasp force using Γ3σ

Table 5.4. State representation for manipulation tasks involving sets of contact
resources, Γ1σ, Γ2σ, and Γ3σ.

110100

011100

110001

010011

001101

000111

000011

001100

110000

001111

110011

111100

Figure 5.3. An MDP describing the manipulation sequences derivable from the basis
controllers in Table 5.2.

from one state to another. For example, the arc that transitions from state (001100)

to (001101) represents the controller, πg|Γ1σ
Γ1τ

/ φgf |Γ2σ
Γ2τ

. This controller transitions the

system from a configuration where the object is held using only contact resources

Γ2σ to a configuration where the object may also be held using contact resources,

Γ1σ. Similarly, when the system is in state, (111100), the object is simultaneously

being held by contact resources Γ2σ and Γ3σ. Executing πg|Γ1σ
Γ1τ

in the null space of

either πgf |Γ2σ
Γ2τ

or πgf |Γ3σ
Γ3τ

forms a Γ1σ grasp while holding the object using the contact

resources of either Γ2σ or Γ3σ. Assuming that it is not possible to grasp using all three

103

contact resources simultaneously, the system releases the grasp for the other contact

resources and the system transitions to state (011100) or (110100).

The MDP in Figure 5.3 encodes the space of all manipulation sequences that can

be derived from the basis controllers of Table 5.2. This is a particularly convenient

representation when the objective of manipulation is to reach a desired state or set of

states in the MDP. If it is known a priori that all controllers will realize the expected

transition (that is, all grasps are compatible with each other), then manipulation

sequences can be planned using breadth-first search. In the case where the transition

function is unknown ahead of time, an on-line learning algorithm such as RL can be

used to learn the transition function and an optimal policy that reaches a desired

manipulation configuration simultaneously.

5.5 Case Study: Bimanual Manipulation on Dexter

Provided that suitable controllers are available, this chapter’s approach to dex-

terous manipulation can be applied to virtually any statically-stable manipulation

problem. This section describes a case study where Dexter, the UMass bimanual hu-

manoid (see Appendix C), manipulates a beach ball that is 36cm in diameter (shown

in Figure 5.2) by transitioning among three grasps: 1) a two-contact opposition grasp

where each of Dexter’s hands is a single virtual finger, 2) a one-contact grasp where

Dexter’s left hand opposes gravity, and 3) a one-contact grasp where Dexter’s right

hand opposes gravity. An MDP is presented that encodes the manipulation behavior

that can be created by sequencing these controllers. Two demonstrations are de-

scribed that show this MDP to be capable of representing dexterous behavior that

rotates and translates the beach ball. In the first demonstration, Dexter uses rein-

forcement learning to discover a rotation gait. In the second demonstration, Dex-

ter learns which grasp to use when transporting an object to different places in its

workspace.

104

5.5.1 Controllers for Bimanual Manipulation

The manipulation behavior considered in this case study is generated by the sliding

grasp controller of Section 4.3,

πsgx|Γσ
Γτ
≡ πs|Γτ

Γτ

(
πgx|Γσ

Γτ

)
,

the rotation grasp controller of Section 4.4.2,

πrgθ|Γσ
Γτ
≡ πr|Γτ

Γτ

(
πgθ|Γσ

Γτ

)
,

the grasp force controller of Section 5.2, πgf |Γm
Γm

, the position controller of Section 3.1.1,

φp|σp(Γm)
τp(Γm) , a “guarded move” controller that is defined in the following, and a slide-to-

position controller also defined in the following.

A “guarded move” is a motion that halts upon sensing a certain threshold force.

This function is implemented as a composite combination of a force and position

controller,

πgm|Γm
Γm

(xref) ≡ φp|σp(Γm)
τp(Γm) (xref) / φf |σf (Γm)

τf (Γm) (κgmσ̂f (Γm)) , (5.13)

where κgm specifies the magnitude of the force that will halt the motion. Since the

position controller is subordinate to the force controller, the controller will not apply

force magnitudes in excess of κgm. When the reference force magnitude is reached,

the position controller displacements are filtered out by the force controller null space

and the composite controller reaches equilibrium.

This case study in bimanual dexterous manipulation uses a sliding controller that

moves contact resources to specified positions on the object in response to contact

configuration goals. When the beach ball is held in an antipodal grasp (with the

left and right hands in opposition), a sliding controller can be used to introduce a

90-degree displacement of the contact relative to the object. The sliding controller

105

Number Controller Description

1 πrgθ|{γl,γg}
{γl} grasp left/grav

2 πrgθ|{γr,γg}
{γr} grasp right/grav

3 πsgx|{γl,γr}
{γl} grasp left/right

4 πsgx|{γl,γr}
{γr} grasp right/left

5 πgf |{γl,γr}
{γl,γr} hold left/right

6 πsp|{γl}
{γl}(fl) slide left fl

7 πsp|{γr}
{γr}(fl) slide right fr

8 φp|σp(γr)
τp(γr) (x) reach right x

9 φp|σp(γl)
τp(γl)

(x) reach left x

10 φp|σp(γobj)

τp({γl,γr})(x) reach object x

11 πgm|{γl}
{γl}(x) guarded move left x

12 πgm|{γr}
{γr}(x) guarded move right x

Table 5.5. The set of controllers available to Dexter during the case study.

displaces the contacts approximately 90 degrees to either the left or right sides of the

object. In this case study, this is accomplished by parameterizing the force residual

controller with a positive reference force:

πsp|Γσ
Γτ

(fref) ≡ πs|Γτ
Γτ

(
φfr|σfr(Γσ)

τfr(Γτ) (fref)
)
. (5.14)

This controller realizes the 90 degree contact displacement by parameterizing the force

residual controller with a reference force perpendicular to gravity: fl = (0,−1, 0)T or

fr = (0, 1, 0)T .

The set of contact resources that can be used to parameterize the above controllers

in the context of bimanual manipulation are,

Γbi = {γl, γr, γg}, (5.15)

where γl = {f left
1 , f left

2 , f left
3 } is a virtual contact comprised of the three fingers on the

left hand, γr = {f right
1 , f right

2 , f right
3 } is a virtual contact comprised of the three fingers

106

on the right hand, and γg is the gravitational virtual finger. The subset of parame-

terizations of the five controllers that are used to generate bimanual manipulation on

Dexter is illustrated in Table 5.5. Controllers 1 and 2 grasp an object by rotating the

left and right contacts, respectively, so as to oppose gravity. Controllers 3 and 4 grasp

an object by sliding virtual contacts on the left and right hands, respectively, over the

surface of the object so as to reach a left-right opposition grasp. Controller 5 holds

an object by applying an internal force between virtual contacts on the left and right

hands. Controllers 6 and 7 slide the left and right contacts into configurations on the

side of the object. Controllers 8 and 9 move the left and right contacts, respectively,

to a reference position, x. Controller 10 moves a virtual contact that corresponds to

the object being grasped, γobj, to reference position. In this controller, γobj = {γl, γr},
is a virtual contact that is used to calculate the position between the two hands, i.e.

the position of the grasped object. Finally, controllers 11 and 12 execute guarded

moves with the left and right hands, respectively, to the reference position.

Static stability constraints during dexterous manipulation are satisfied by execut-

ing these controllers in the null space of controllers that preserve existing force closure.

In this case study, all controllers execute in the null space of πgf |{γl,γr}
{γl,γr}, πrgθ|{γl,γg}

{γl} ,

or πrgθ|{γr,γg}
{γr} (Controllers 5, 1, and 2 in Table 5.5). Note that controllers 1 and 2

are grasp controllers, not grasp force controllers as Section 5.4 prescribes. This is in

recognition of the fact that since gravity is an uncontrolled resource, it is not possible

to use it to apply arbitrary internal forces. Instead, controllers 1 and 2 “hold” the

object by maintaining opposition to gravity.

5.5.2 Bimanual Manipulation MDP

Since all of the controllers in Table 5.5 are derived from force, position, and

grasp controllers, the state space of the bimanual manipulation MDP for Dexter

can be defined in terms of these control objectives. States are encoded as bit vec-

107

Bit Controller Description

00000000001 φf |σf (γl)(κgmσ̂f (Γf)) contact left
00000000010 φf |σf (γr)(κgmσ̂f (Γf)) contact right
00000000100 φfr|σfr({γl,γr}) ∧ φmr|σmr({γl,γr}) grasp left/right
00000001000 φfr|σfr({γl,γg}) ∧ φmr|σmr({γl,γg}) grasp left/grav
00000010000 φfr|σfr({γr,γg}) ∧ φmr|σmr({γr,γg}) grasp right/grav
00000100000 φfr|σfr(γl)(fl) left perpendicular grav
00001000000 φfr|σfr(γr)(fr) right perpendicular grav
00010000000 φp|σp(γl)(xl) left position xl

00100000000 φp|σp(γl)(xr) right position xr

01000000000 φp|σp(γobj)(xobj) object position xobj

10000000000 φf |σf ({γl,γr})(σc({γl, γr})) left/right hold

Table 5.6. Representation of state as a bit vector. Robot state is represented as an
11-bit number. The assertion of a bit indicates that the corresponding controller is
converged.

tors describing the pattern of controllers that are converged. Table 5.6 defines the

correspondence between bits and controllers. Bits (00000000001) and (00000000010)

are asserted when the virtual contacts on the left and the right hands, respectively,

are in contact with the object, (i.e. they experience a force greater than κgm.) Bits

(00000000100), (00000001000), and (00000010000) are asserted when a grasp exists,

respectively, between the left and right hands, the left hand and gravity, and the

right hand and gravity. Bits (00000100000) and (00001000000) are asserted when

the virtual contacts on the left and right hand, respectively, are on the side of

the object (when they apply a force perpendicular to gravity.) Bits (00010000000),

(00100000000), and (01000000000) are asserted when the virtual contact on the left

hand, the right hand, and the position of the object between the hands is in a reference

position, xl, xr, and xobj, respectively. Finally, bit (10000000000) is asserted when an

internal force exists between the left and right virtual contacts that holds the object.

Note that the bits describing the state of the position controllers, (00010000000),

(00100000000), and (01000000000), are referenced to arbitrary positions xl, xr, and

xobj. It should be understood that there may be many positions that may be rele-

108

vant to the manipulation problem. In these cases, the state representation should be

augmented accordingly.

00000110011

00010001001

00000001001

00000010111

00000010011

11000000111

00100010010

00000010010

00000001011

00000001111

00001001011

1000000111110000010111

10000000111

Figure 5.4. The Markov Decision Process (MDP) used in the case study. The circles
with binary numbers in them represent states. The arrows represent likely transitions
caused by taking actions. Different trajectories through this graph correspond to
the different ways the beach ball can be manipulated by executing controllers from

Table 5.5 in the null space of πgf |{γl,γr}
{γl,γr}, πrgθ|{γl,γg}

{γl} , or πrgθ|{γr,γg}
{γr} .

Figure 5.4 illustrates the MDP defined over the states in Table 5.5. The bit

vectors inside the circles encode state. The arrows encode the different transitions

that are possible when one of the controllers in Table 5.5 executes in the null space of

πgf |{γl,γr}
{γl,γr}, πrgθ|{γl,γg}

{γl} , or πrgθ|{γr,γg}
{γr} . The ability of this MDP to represent statically-

109

Step State Action

1 1000001111 πsp|{γr}
{γr}(fr) / πgf |{γl,γr}

{γl,γr}
2 00001001011 πrgθ|{γrγg}

{γr} / φrgθ|{γl,γr,γg}
{γl,γr}

3 00000010011 πsgx|{γl,γr}
{γl} / πrgθ|{γr,γg}

{γr}
πgf |{γl,γr}

{γl,γr}
4 10000010111 πrgθ|{γlγg}

{γl} / πgf |{γl,γr}
{γl,γr}

Table 5.7. A sequence of controllers that Dexter learned rotated the beach ball
by approximately 90 degrees. Step 3 is a macro action that executes an opposition

grasp controller followed by a grasp force controller: πsgx|{γl,γr}
{γl} / πrgθ|{γr,γg}

{γr} followed

by πgf |{γl,γr}
{γl,γr}.

stable manipulation behavior is illustrated in the following two demonstrations where

Dexter learns to rotate the beach ball and to select a grasp consistent with a goal of

transporting the ball to a desired location.

5.5.3 Demonstration 1: Learning A Rotation Gait

In the first experiment, Dexter learned a policy for rotating the beach ball. This

policy was learned in simulation using a model-based variation of RL called DYNA-

Q [78]. In this form of RL, a policy and transition model are simultaneously learned.

Every new experience is used to improve the policy using SARSA(λ) [78]. In addition,

each experience is used to improve the system’s transition model. Since the SARSA(λ)

backup algorithm can execute much faster than real experience can be acquired, the

system creates artificial experiences based on its learned model. SARSA(λ) was used

instead of a version of Q(λ) because eligibility traces in both Watkins’s Q(λ) and

Peng’s Q(λ) cannot extend beyond the last exploratory action. This enables the

system to improve its policy up to the limits of the accuracy of its transition model.

In this experiment, the system starts in state (10000001111), where Dexter simul-

taneously holds the ball in an opposition grasp between virtual contacts on the left

and right hands and in opposition between the left hand and gravity. At the first

110

1000000111110000001111 00001001011 00000010011 10000010111

Figure 5.5. The sequence of states that corresponding to Table 5.7.

time-step, and every subsequent time when the system returns to state (10000001111),

the orientation of the ball is stored. Positive rewards are assigned to transitions that

lead the system back into state (10000001111) with a positive net change in orien-

tation about an axis perpendicular to Dexter’s frontal plane. Transitions that lead

to state (10000001111) without an associated net change in orientation (for example,

(10000001111) to (10000010111) to (10000001111)) are not rewarded. The change

in orientation is measured by tracking the net displacement of the contacts on the

surface of the ball. During learning, Dexter explored the MDP shown in Figure 5.4 by

executing the controllers shown in Table 5.5 in the null space of πgf |{γl,γr}
{γl,γr}, πrgθ|{γl,γg}

{γl} ,

or πrgθ|{γr,γg}
{γr} . In order to simplify learning, Dexter was given access to two “macro

actions” (a macro action is a sequence of controllers that Dexter considered to be

a single action). The first macro action executed πsgx|{γl,γr}
{γl} / πrgθ|{γr,γg}

{γr} , followed

by πgf |{γl,γr}
{γl,γr}. The second macro action executed πsgx|{γl,γr}

{γr} / πrgθ|{γr,γg}
{γr} , followed by

πgf |{γl,γr}
{γl,γr}. Dexter was not allowed to execute any of these constituent actions; it only

had access to the macro actions. A total of 18 experiments were executed in simula-

tion. In each experiment, Dexter executed 40 trials. On each trial, Dexter executed a

maximum of 15 controllers, after which, the trial was automatically terminated and

restarted from the start state. The trial was terminated and restarted if the goal

state was reached. The system learned the policy that is partially listed in Table 5.7,

and illustrated in Figure 5.5. The left/right grasp and grasp force controllers listed in

step 3 of Table 5.7 reflect the macro action described above. Since the learned policy

111

returns the system to the same state, it can be repeated to rotate the object arbitrar-

ily far. Each iteration of the policy generates a net object rotation of approximately

90 degrees.

0 5 10 15 20 25 30 35 40
4

6

8

10

12

14

16

Trial

A
vg

 N
u

m
b

er
 o

f
S

te
p

s

Learning Curve for Ball Rotation Gait

Figure 5.6. Learning curve illustrating performance as a function of experience. As
the number of experiences (episodes) increases, the average number of steps to rotate
the beach ball decreases.

Figure 5.6 shows the performance of learning. The number of control actions

needed to complete the rotation is shown as a function of experience (number of

trials experienced). As the number of trials increases (and experience accrues), the

rotation becomes more and more efficient. After approximately 20 trials, the system

has learned an optimal policy. Although, in this experiment, training occured as a se-

quence of trials, a similar approach is applicable when training consists of a single long

trial. In that case, a similar reward structure that rewards net rotations of the object

can be used. However, instead of terminating the trial and resetting the system after

executing 15 controllers, learning would simply continue until the correct behavior

was learned. Although learning occurred in simulation in this experiment, the policy

performed as predicted on the physical Dexter platform, as shown in Figure 5.5.

112

5.5.4 Demonstration 2: Object Transport

In addition to rotation tasks, dexterous manipulation is also useful in object trans-

portation tasks. In these tasks, the robot must appropriately grasp an object so that

it is able to place it in a desired position. In this case study, Dexter can hold the

beach ball in its left hand by opposing gravity, in its right hand by opposing grav-

ity, or in opposition between both hands. Dexter’s ability to transport the ball to

different places in its workspace depends upon which of these grasps is used. In this

demonstration, Dexter learned through trial-and-error which grasp to use as a func-

tion of the position to where the ball must be transported. Dexter experienced the

manipulation problem in a sequence of trials. At the beginning of each trial, Dexter

was given a randomly selected goal position where the ball was required to be moved.

In order to simplify the demonstration, goal positions are always selected from a line

parallel to Dexter’s frontal plane and parallel to the ground. Then, Dexter selected

one of the three possible grasps and executed a manipulation sequence so as to reach

that grasp. Finally, Dexter attempted to transport the ball to the goal position in

the null space of the selected grasp. If the controller converged without reaching the

goal position, the trial was considered to be a failure. Each of the three grasps were

associated with different regions of space where Dexter could reach while maintain-

ing the grasp. Reaches failed when Dexter attempted to reach to a region of space

incompatible with the current grasp.

In this demonstration, Dexter uses three macro actions (a macro action is a se-

quence of controllers that are considered by Dexter to be a single action), illustrated

in Figure 5.7, to reach each of the three grasp configurations. The first macro action,

πγl,γr , is a policy that navigates to state (10000000111) in the bimanual manipulation

MDP of Figure 5.4. Essentially, this policy executes a sequence of re-grasps so that

the beach ball is held in opposition between the left and right hands. The second

macro action, πγl,γg , is a policy that navigates to state (00000001001). This macro

113

(a) (b) (c)

Figure 5.7. An illustration of Dexter’s configuration after executing each of the
three macro actions used in the object transport demonstration. In (a), Dexter has
executed πγl,γg so as to reach a left/gravity opposition grasp. In (b), Dexter has
executed macro action πγl,γr so as to reach a left/right opposition grasp. In (c),
Dexter has executed πγr,γg so as to reach a right/gravity opposition grasp.

action re-grasps the ball so that it is held by the left hand in opposition to gravity.

The third macro action, πγr,γg , is a policy that navigates to state (00000010010).

This macro action re-grasps the ball so as to hold with the right hand in opposition

to gravity.

Dexter learns to select a grasp that allows it to reach a given goal position through

trial-and-error. On each trial, Dexter attempts to move the ball to a randomly selected

goal position by executing one re-grasp macro action followed by a reach action (the

reach action executes in the appropriate null space in order to maintain the grasp).

Based on its experiences, Dexter builds a model estimating its probability of transport

success as a function of goal position and grasp type. This model approximates this

success as a function of goal position and grasp type by taking the distance-weighted

average of the two nearest neighbors in the space of goal positions for a given grasp

type. For example, the probability that a reach to x1 will succeed after executing

πγr,γg is the distance-weighted average of the success (1) or failure (0) of experiences

that used the same grasp type and had reach goal positions nearest x1. On each trial,

Dexter selects the re-grasp macro action that has the highest probability of success.

Following the trial, the model is improved with the resulting new experiences. This

114

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Prob. of Reaching Target Using Left Hand Grasp

Target Position

P
ro

b
ab

ili
ty

(a)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Prob. of Reaching Target Using Two Hand Grasp

Target Position

P
ro

b
ab

ili
ty

(b)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Prob. of Reaching Target Using Right Hand Grasp

Target Position

P
ro

b
ab

ili
ty

(c)

Figure 5.8. Estimated probability of reach success and failure (vertical axis) as
a function of goal position (horizontal axis). (a) illustrates this relationship when
the ball is held in opposition between the left hand and gravity. (b) illustrates the
relationship when the ball is held between both hands. (c) illustrates the relationship
when the ball is held in the right hand.

strategy of selecting the re-grasp macro action estimated to be most likely to succeed

enables Dexter to focus its sampling on more successful grasps.

Figure 5.8 illustrates the estimated probability of success as a function of goal

position for the three grasp types. The data is from a typical learning experiment.

Figure 5.8(a) shows the estimated probability of success while holding the ball with

the left hand. Figure 5.8(b) shows the estimated probability of success while holding

the ball between both hands. Finally, Figure 5.8(c) shows the estimated probability of

success while holding the ball with the right hand. Actual experiences are illustrated

by the heavy dots while the lines drawn over the dots illustrate the approximated

function. The piece-wise linear shape of the estimated probability function is a result

of calculating the distance-weighted average of the two nearest neighbors. In two

dimensions, this method essentially approximates the function as a line between the

two nearest points. Note that most of the heavy dots, indicating actual experiences,

have a probability of 1, indicating that those object transport actions reached the

desired position successfully. This is a result of the greedy exploration strategy that

selected the grasp that was estimated to be most likely to succeed.

115

5.6 Summary

This section proposes a representation for structuring the acquisition of manipu-

lation policies based on grasp controllers. Manipulation is represented as a trajectory

through a series of statically-stable grasps, where each grasp is associated with a

grasp controller. The robot navigates between stable grasps by executing a grasp

controller in the null space of a controller that maintains a previous stable grasp. If

there are regions of the robot’s configuration space where the grasp controller and the

grasp force controller can be converged simultaneously, then a transition is possible.

By executing the grasp controller in the null space of the grasp force controller, the

robot navigates to a configuration where the new grasp controller is converged while

also maintaining the existing wrench closure condition. The scope of all manipula-

tion possibilities can be represented in terms of a Markov Decision Process (MDP)

based on control-basis states and actions. A case study is described where Dexter,

the UMass bimanual humanoid, learns a manipulation gait that rotates a beach ball

and learns which grasps allow the ball to be transported to different regions of the

workspace.

Although this section focuses on manipulation behavior, it should be possible to

apply the same principles to arbitrary force domain behavior. In particular, it should

be possible to generate autonomous climbing behavior using the same approach to

maintaining wrench closure constraints. In the case of climbing, the concept of wrench

closure translates into a statically stable hand/foot stance. It should be possible

to represent climbing behavior as a series of stable hand/foot stances. The robot

could transition between stances by executing climbing controllers in the null space

of an existing stable stance. In addition to climbing, the approach should extend to

statically stable walking for the same reasons.

116

CHAPTER 6

THE ACTION SCHEMA FRAMEWORK

The closed-loop controllers of Chapters 4 and 5 are useful for producing force-

domain behavior while suppressing disturbances because they generate and maintain

grasps. However, as the grasping experiments at the end of Chapter 4 demonstrate,

the robot must start in a suitable domain of attraction in order to converge to a good

grasp. Coelho and Grupen propose using reinforcement learning to discover which

sequence of moment residual controllers is likely to lead to appropriate grasp conver-

gence. This chapter proposes a new learning algorithm, schema structured learning,

that is able to take advantage of structure implicit in the control basis in order to

improve the efficiency of learning [59, 57]. Classes of controllers correspond to regular

expressions that define sets of controllers with related functionality. These classes

of controllers are used to define a generalized solution that can be instantiated in

different ways. The robot learns to select the instantiation that maximizes the prob-

ability of ultimate convergence as a function of problem context. Chapter 7 applies

this approach to the grasp synthesis problem where the robot learns which instanti-

ations of the reach controller ultimately lead to grasp convergence, given contextual

information regarding the object shape, size, and pose.

6.1 Motivation and Approach

In order for a grasp controller to converge to a good grasp configuration for a

particular task, the robot must start in the appropriate domain of attraction. In-

stead of analytically characterizing the domains of attraction of various controllers,

117

as in Burridge et al., it is frequently more practical to learn which controllers should

precede the grasp controller in order to ensure grasp convergence [11]. While learning

methods based on Markov Decision Processes (MDPs) allow this type of learning,

these algorithms can take a long time to execute because they must consider every

possible sequence of actions and a number of possible outcomes. This approach belies

the reality that in many robot problems, the approximate structure of the solution

is already known at design time. Although the precise details of a robot’s operating

environment may be unknown ahead of time, most robots are designed to perform

specific functions. This chapter takes advantage of this by constraining the search for

a solution to instantiations of a generalized policy, encoded by an action schema. A

new algorithm, schema structured learning, searches for instantiations of the general-

ized policy that lead to convergence of every controller that executes.

Although motivated in terms of controllers, the idea of a learning process that is

constrained to a generalized solution can be applied to problems expressed in terms

of arbitrary Markov processes. Instead of controller states, the goal of schema struc-

tured learning is defined more broadly in terms of action transition dynamics. The

action schema encodes a generalized transition function that deterministically defines

how actions should transition. The objective of schema structured learning is to dis-

cover which policy instantiations are likely to result in transitions that adhere to the

generalized transition function given problem context. Schema structured learning

explores instantiations of the generalized policy in order to find these policy instanti-

ations. Consider a robot that picks up objects by executing the same general sequence

of actions: localize, reach, and grasp. Depending upon the object to be grasped, it

may be necessary to execute different reach and grasp controllers. Object characteris-

tics that inform this decision, such as object position, shape, and size, are context for

the grasping problem. For example, object position may be used to inform the choice

of which hand to use for grasping. Instead of considering all possible sequences of

118

actions every time a new object is encountered, schema structured learning restricts

its search to variations of the generalized localize-reach-grasp policy.

The structure of the control basis can be used to define an abstract space over

which to define the generalized policy and transition function. Recall from Section 3.4

that the set of all control basis controllers is described by a context-free grammar, Gcb.

This chapter proposes that classes of controllers with similar functionality be encoded

by regular expressions that define subsets of the language of Gcb. These classes of

controllers correspond to abstract actions and are used to define abstract states.

Since these abstract actions and states can be mapped into the underlying state and

action space, they can be used to define an action schema. A policy defined over

this abstract space maps into a number of policy instantiations. Schema structured

learning searches these policy instantiations for those most likely to lead to controller

convergence in a given context.

When compared to the large number of solutions that must be considered when

solving a problem specified as an MDP, the action schema’s generalized policy con-

strains the search and therefore makes learning faster. In addition, schema structured

learning needs to estimate fewer transition probabilities because it can immediately

discard the transitions that do not adhere to generalized transition constraints. When

considering the execution of an action in an MDP, a learning algorithm or planning

technique must consider all possible outcomes of the action. Beside the reward func-

tion, an MDP makes no prior assumptions about what each action should cause

the system to transition. In contrast, the action schema specifically defines the de-

sired outcome of actions. Since non-conforming transitions automatically fail to meet

action schema objectives, the probability of these transitions does not need to be

modeled in order to maximize the probability of success.

119

6.2 Background

The notion of a schema in the context of childhood development originates with

Jean Piaget. Piaget was a psychologist who developed a four-stage theory of childhood

development based on his observations of children [55]. In the sensorimotor stage,

Piaget proposed that the child focuses on the creation and adaptation of schemata.

Schemata are mental representations of action or perception [55]. Two competing

processes, accommodation and assimilation, change and adapt the child’s schemata

in response to new experiences. In accommodation, the child responds to a new expe-

rience by creating a new schema structure that explains/represents it. In assimilation,

the child adapts an existing schema to represent the new experience while continu-

ing to represent old experiences. Through the process of assimilation, the child is

able to represent multiple experiences as variations of the same general structure.

Throughout the sensorimotor stage, the infant develops a representation of the world

by alternately accommodating and assimilating new experiences.

Of particular interest to this thesis are schemata that produce sensory and motor

behavior. After a schema is created, the infant possesses an “innate tendency” to

exercise the new schema. In the case of an action-based schema, the child attempts

to generate the behavior associated with the schema over and over again. Piaget

calls this cycle of replaying schemata a circular reaction [55]. In the primary circular

reaction, the infant attempts to recreate behavior that terminates in the activation

of a reflex such as sucking or closing the hand. Piaget makes an example of how the

child learns to suck the mother’s nipple. While the sucking behavior itself is a reflex,

moving the head toward the nipple in order to suck is not. Through accommodation, a

schema is created that moves the head toward the nipple, triggering the sucking reflex.

However, the child needs to move his/her head differently depending upon where

the nipple is with respect to the head. The primary circular reaction (in addition

to hunger) causes the infant to repeatedly attempt to suck the nipple. Through

120

assimilation, the infant differentiates various head-nipple configurations and learns

the appropriate movement in each situation.

The secondary circular reaction is a similar process. It differs from the primary

circular reaction only in that the schema need not terminate in a reflexive act [55]. In

this case, a schema is created that causes an “interesting” observation to occur. The

secondary circular reaction causes the infant to repeatedly attempt to recreate the

interesting observation. In the process, the infant has the opportunity to differentiate

the schema by assimilating new experiences. Piaget describes his daughter manually

swatting a hanging toy as an example of the secondary circular reaction. First, the toy

is swatted by accident and the observation of the swaying toy is deemed interesting.

The infant then attempts to recreate the observation of swaying by replaying the

actions that lead up to the observation. Through the process of assimilating new

experiences of toy swatting, the infant learns to swat the toy reliably from different

directions.

Piaget’s notion of the schema is a major inspiration for the action schema compu-

tational framework proposed in this chapter. As with Piaget’s schema, this chapter’s

action schema is a generalized representation of an activity or behavior. As in the

circular reaction, schema learning repeatedly attempts to execute the action schema.

Finally, in a process similar to assimilation, this chapter’s schema structured learning

algorithm uses new experiences to adapt to new contexts.

One of the first to use Piagetian ideas in a computational framework was Ar-

bib [2]. Arbib proposes the schema theory approach to intelligent behavior. At the

lowest level, schema theory proposes two major types of schemata: the perceptual

schema and the motor schema. A perceptual schema is a process that responds to

only a specific, task-relevant concept. Perceptual schemata essentially produce sen-

sory abstractions relevant to accomplishing goals. A motor schema is a generalized

program that describes how to accomplish a task. When a perceptual schema triggers

121

that its target concept is present, it can “give access” to a motor schema that takes

the appropriate action. Schema theory proposes that a large number of perceptual

schemata and motor schemata can interact in the context of a coordinated control

program, thereby generating intelligent behavior [2]. The action schema framework

proposed in this chapter has many similarities to Arbib’s schema theory. As in a

motor schema, this chapter’s action schema provides a generalized representation of

an activity or behavior. However, instead of relying on a separate perceptual schema

to identify a relevant concept, the action schema takes on this role as well. Arkin has

applied schema theory to behavior-based robotics [4].

A well known attempt at computational intelligence based on Piaget’s theory of

childhood development is the work of Gary Drescher. Drescher’s schema mechanism

appropriates the Piagetian schema as its fundamental building block and develops a

complex computational framework for learning new concepts, items, and hypothesiz-

ing new schemata to interact with these concepts [20]. Learning starts with a few

schemata and primitive items that represent basic motor activities and perceptions.

By executing schemata, the system discovers new items and proposes new schemata

for interacting with these items. Although implementations of this architecture have

had limited success, Drescher’s work is significant because it is a plausible descrip-

tion of a powerful and comprehensive architecture that incorporates many Piagetian

ideas. The goals of the approach proposed in this chapter are more limited than those

of Drescher. The current approach uses a few of Piaget’s ideas to achieve the more

modest goal of practical and adaptive robot behavior.

Also related to the action schema approach proposed in this chapter is the MDP

Model Minimization framework of Dean and Givan [18]. Model minimization is an

algorithm for generating a potentially simpler MDP by aggregating states in a fully

modeled MDP. Solutions to the “reduced” MDP correspond to solutions in the un-

derlying MDP. The reduced representation is based on a partition of the underlying

122

state space. The partition satisfies two conditions that guarantee equivalence. First,

for any action, the probability of transitioning between any two partitions does not

depend on the states within the two partitions the system is transitioning between.

This is known as “stochastic bisimulation homogeneity” and it ensures that the sys-

tem transition dynamics can be modeled as a stationary distribution over blocks of

the partition rather than over individual states. Second, if taking an action from a

state in a partition results in a reward, then taking the same action from any other

state in the same partition also results in the same reward. This condition ensures

that policies defined over the abstract state representation accrue the same discounted

expected rewards.

Ravindran has used a similar approach to define an MDP homomorphism that

maps state action pairs in the underlying MDP to state action pairs in an “abstract

MDP” [67]. Instead of only partitioning the state space, an MDP homomorphism

induces equivalence classes of state action pairs with similar properties to those of the

state partitions of Dean and Givan. Ravindran has shown the MDP homomorphisms

to be a flexible and powerful framework that captures the structure represented by

many other approaches including deictic representations and model minimization [67].

6.3 Action Schema Definition

The action schema framework assumes that at the lowest level, the behavior of the

robot can be understood in terms of Markov states and actions. The action schema

represents a generalized solution by defining a policy over an abstract state and action

space. This abstract policy is projected onto the low-level states and actions (i.e. the

underlying states and actions) by a function that maps the abstract space onto the

underlying space. This function makes it possible to translate the abstract policy into

a number of policy instantiations that represent the space of potential solutions. The

action schema also defines an abstract transition function that specifies the desired

123

transition behavior. The goal of schema structured learning is to discover which policy

instantiation is most likely to have the action schema’s desired transition behavior.

An action schema is a tuple,

S = 〈S ′, A′, π′, T ′〉 , (6.1)

where S ′ and A′ are an abstract state and action space, π′ is an abstract policy, and

T ′ is an abstract transition function that encodes “desired” transition behavior. It is

assumed that the robot operates in an underlying Markov state and action space, S

and A associated with a real-valued context C, but that a mapping exists between

the underlying and abstract state and action spaces. The abstract policy,

π′ : S ′ → A′, (6.2)

is a generalized solution, defined in the abstract space, that has many policy instan-

tiations in the underlying space. These policy instantiations are defined in terms of

state and action functions,

f : S → S ′ (6.3)

and

g : A → A′, (6.4)

that assign each underlying state and action to a single abstract state and action.

The inverses of these functions are defined to be one-to-many mappings,

f−1(s′) = {s ∈ S|f(s) = s′} (6.5)

and

g−1(a′) = {a ∈ A|g(a) = a′}. (6.6)

124

f()=

1

s 2

a2 a3 ana1

s’2

a’2

s 2 s’2

a’2g ()={ }−1 a1 an...

...

...

...

s

Figure 6.1. Projecting the abstract policy onto the underlying state-action space:
Assume that the robot is in state s2. The state mapping, f , projects this to abstract
state, s′2. The abstract policy specifies that abstract action a′2 is to be taken next.
This inverse action mapping, g−1 projects a′2 back onto the set of feasible action
instantiations.

These inverse mappings associate each abstract state and action with an equivalence

class of underlying states and actions.

These functions and inverse mappings make it possible to translate the abstract

policy into the set of potential policy instantiations. Assume that the system is in

abstract state, s′t. The abstract action specified by π′(s′t), a′, can be projected onto

a set of equivalent underlying actions using the inverse action mapping, g−1(π′(s′t)).

Therefore, given the state and action mapping, the abstract policy, π′, can be mapped

onto any policy, π, such that,

∀st ∈ S, π(st) ∈ g−1(π′(f(st))). (6.7)

These policies are called policy instantiations of the abstract policy. This is illustrated

in Figure 6.1. Suppose that the robot is in state s2 ∈ S. The state mapping,

f(s2) = s′2, projects this state onto s′2 ∈ S ′. From this abstract state, the abstract

policy takes abstract action a′2, π′(s′2) = a′2. Finally, the inverse action mapping, g−1,

projects this abstract action onto a set of action choices, g−1(a′2) = {a1, . . . , an}.

125

localized

l rφ gφ
000 001 111011

localized

reached

localized

reached

grasped

φ

Figure 6.2. The localize-reach-grasp action schema.

For example, Figure 6.2 illustrates an action schema that grasps an object by ex-

ecuting three controllers in sequence. The action schema is defined over four abstract

states and three abstract actions. The abstract states are drawn as circles and the

actions as lines between the circles. Abstract states characterize the set of converged

controllers in terms of controller classes. Controllers are classified in terms of the

identity of their potential function. The abstract states denote which classes contain

member controllers that have converged as a three-bit binary number. The first bit,

(001), indicates that a localize controller (a controller that uses the localize arti-

ficial potential) is converged; the second, (010), that a reach controller is converged;

and the third, (100), that a grasp controller is converged. Only four states (out of

eight possible) are shown in the figure because the others are irrelevant to the abstract

policy. Actions and the expected subsequent transition are represented in the figure

by arrows. For example, executing a reach controller, φr, when the system is in state

(001) causes an expected transition to (011). The double circle in state (111) is an

absorbing state. This action schema represents the generalized behavior of sequen-

tially executing some type of localize controller, some type of reach controller,

and some type of grasp controller.

6.4 Optimal Policy Instantiations

The goal of schema structured learning is to discover the policy instantiations

that maximize the probability of meeting transition constraints specified by the ac-

126

tion schema as a function of problem context. The action schema deterministically

characterizes the desired behavior of the robot with the abstract transition function,

T ′ : S ′ × A′ → S ′. (6.8)

T ′ specifies how the system must transition in response to executing the action. In

particular, when executing underlying action a ∈ A from state st ∈ S, the next state,

st+1 ∈ S must satisfy,

st+1 ∈ f−1(T ′(f(st), g(a))). (6.9)

When an action is executed and it causes the robot to transition to one of these next

states, that action is said to succeed. Otherwise, the action fails. If an entire sequence

of actions succeeds, then the resulting state-action trajectory is said to be a successful

trajectory.

When a sequence of actions specified by a policy instantiation executes, the result-

ing state-action trajectory either succeeds or fails. An optimal policy instantiation,

π∗, is one which maximizes the probability of a successful trajectory. Let P π(a|st, c)

be the probability of a successful trajectory given that the system takes action a ∈ A,

starting in state st ∈ S and context c ∈ C, and follows policy instantiation π after

that. If Π is defined to be the set of all possible policy instantiations, then

P ∗(a|st, c) = max
π∈Π

P π(a|st, c) (6.10)

is the maximum probability of a successful trajectory taken over all possible policies.

Assuming that states are Markov, this allows the optimal policy to be calculated

using,

π∗(st, c) = arg max
a∈B(st)

P ∗(a|st, c), (6.11)

where B(st) = g−1(π′(f(st))) is the set of actions that are consistent with the ab-

stract transition function when the system is in state st ∈ S. This policy always

127

selects the action that maximizes the probability of satisfying action schema transi-

tion constraints.

Unfortunately, it is impractical to use Equations 6.10 and 6.11 directly to solve for

the optimal policy instantiation because the number of possible policy instantiations

in Π is exponential in the length of the policy. However, as is the case with Markov

Decision Processes (MDPs), this problem admits a dynamic programming algorithm

that is polynomial in the number of viable state-action pairs. Denote as N(st, a) =

f−1(T ′(f(st), g(a))) the set of next states that satisfy Equation 6.9 when action a

executes from state st. Let P (success|st, c, a) be the probability that these transition

constraints are satisfied when action a executes from state st in context c. Then the

maximum probability of a successful trajectory starting in state st ∈ S and context

c ∈ C and executing action a ∈ A can be calculated recursively,

P ∗(a|st, c) = P (success|st, c, a)
∑

st+1∈N(st,a)

T (st+1|st, c, a) max
a∈B(st+1)

P ∗(a|st+1, c),(6.12)

where B(st) = g−1(π′(f(st))) and T (st+1|st, c, a) is the probability that taking action

a from state st in context c ∈ C causes the robot to transition to state st+1 (notice the

similarities to the standard Bellman equation.) In this equation, state and context (s

and c) play similar roles. Both variables condition the probability of action success.

However, it is assumed that context does not change during execution. Context

conditions the probability of action success, P (success|st, c, a), and the expectation

of next state, T (st+1|st, c, a), but it is not necessary to sum over all possible next

contexts. All relevant information that the robot is able to influence must be captured

by the state space.

When actions correspond to controllers, it is sometimes possible to deterministi-

cally characterize how the system will transition if the controller succeeds. This does

not mean that the underlying transition function must be deterministic in general.

For example, the possibility of unmodeled obstacles may cause a position controller

128

that moves a manipulator to have a stochastic outcome. Nevertheless, if the controller

succeeds, then it may be possible to deterministically characterize the next state. Let

Ts : S × A → S, Ts(st, a) = st+1 (6.13)

be a transition function that deterministically characterizes how successful actions

transition. Then, Equation 6.12 can be simplified:

P ∗(a|st, c) = P (success|st, c, a) max
a∈B(Ts(st,a))

P ∗(a|Ts(st, a), c). (6.14)

In this equation, the maximum probability of a successful trajectory when executing

action a ∈ A is the probability that a succeeds times the maximum probability of

success from the (deterministic) next state.

In order to use Equation 6.14, it is necessary to calculate the probability of ac-

tion success, P (success|st, c, a), and maximize over the set of action instantiations,

a ∈ B(st+1). For a small and discrete number of state and action instantiations,

P (success|st, c, a) may be approximated by a multinomial distribution and the max-

imum may be calculated by enumerating all values. However, these approaches are

not viable for a large or real-valued set of actions and/or states. In the context of

reinforcement learning in MDPs, the problem of large or real-valued state spaces is

typically addressed using function approximation methods to approximate the value

function. However, the use of function approximators can have a significant negative

effect on learning performance and even cause learning to fail altogether [78].

The assumption made in Equation 6.14, that the transition function can be deter-

ministically characterized, is a significant simplification that allows schema structured

learning to be adapted to large or real-valued state and action spaces. Estimating

P (success|st, c, a) for real-valued states, contexts, and actions can be accomplished

using either parametric or non-parametric approximation methods. If the distribu-

129

tion is known (for example, if the distribution is assumed to be Gaussian), then it

is possible to use previously experienced transitions to approximate the parameters

of the distribution (the mean and variance for a Gaussian.) If the distribution is not

known then it is possible to use non-parametric (lazy learning) techniques such as

k-nearest neighbor, distance-weighted averaging, or locally weighted regression [6].

Non-parametric methods have the advantage of not requiring prior information re-

garding the distribution to be estimated, but typically require more data to develop

a good estimate.

A more significant problem with calculating an optimal policy instantiation in

real-valued action spaces is the maximization over actions in Equation 6.14. In a

real-valued action space, the number of valid instantiations of an abstract action,

g−1(a′), is infinite. One way to approximate the quantity maximized in Equation 6.14

is to maximize over a sample of the valid action instantiations. This approximation is

good when the sample size is large and distributed near the true maximum. Instead

of attempting to discretize the action space or use a fixed set of action samples, this

section proposes re-sampling a set Dst,c(a
′) from the set of all valid action instan-

tiations according to the latest estimate of the distribution, P ∗(a|st, c). Sampling

action instantiations from this distribution creates more samples near the maximum

and improves the estimate of the maximum in Equation 6.14. During learning, this

sample-based approach works as follows. At the start, there are few experiences with

which to estimate P (success|st, c, a), and the sample set, Dst,c(a
′), is drawn essentially

from a uniform prior. As experience accumulates, estimates of P (success|st, c, a) im-

prove and lead to better estimates of P ∗(a|st, c). This leads to better estimates

of P ∗(a|st, c), and the sample set, Dst,c(a
′), more densely covers the maximum of

P ∗(a|st, c) and the estimate improves even further. Eventually, the action sample set,

Dst,c(a
′), should converge to a dense set of samples near the maximum of P ∗ for state

st ∈ S and context c ∈ C.

130

6.5 Structure Derived From the Control Basis

The action schema framework allows a learning system to represent a number of

different solutions as variations on the same general solution. This is most useful when

the solution space itself is structured such that all relevant solutions can be expected

to share the same basic characteristics. When robotics problems are understood to

be mechanics problems defined in a world external to the robot, the problem must be

analyzed to determine if such structure exists. Note that in many cases, geometrical

symmetries in the external world can be expected to structure the solution space [65].

In contrast, control-based approaches re-formulate robotics problems as a search for

the correct sequence of available controllers. With these approaches, structure in the

set of available controllers can contribute to structure in the resulting solution space.

By representing control basis controllers as the language of a context-free grammar

(see Section 3.4), controllers with similar functionality have similar representations in

the grammar. This section formalizes this structure by defining classes of controllers

with similar functionality. These classes are used to define abstract state and action

spaces and mappings from an underlying state and action space onto the abstract

space. This framework provides a general method for expressing general solutions

to robotics problems as action schemata. Schema structured learning may be used

to search the space of policy instantiations for instantiations that lead to controller

convergence at low-error solutions.

Recall from Section 3.4 that the set of valid control basis controllers corresponds

to the language of the context-free grammar, Gcb. Controllers with related function-

ality can be identified by similar representations in the language of Gcb. This section

characterizes these similar controllers by regular expressions defined over Ξ, the al-

phabet used to define Gcb. Controllers with related functionality are described by

the intersection of the language of a regular expression R, and the language of Gcb,

L(R) ∩ L(Gcb). For example, consider the regular expression,

131

R1 = Ξ∗πgf |Γgf

Γgf
,

where

πgf |Γgf

Γgf
≡ φf |σf (Γgf)

τf (Γgf) (σc(Γgf)).

The intersection of the languages of R1 and Gcb, L(R1)∩L(Gcb), is the set of controllers

that holds an object using the contact resources, Γ, as a first priority. Three such

controllers were defined in Equations 5.9, 5.10, and 5.11:

π1 = φp|σp(γl,γr)
τp(γl,γr) (xref) / πgf |{γl,γr}

{γl,γr},

π2 = φk|σk(Γq)
τk(Γq) (qref) / πgf |{γl,γr}

{γl,γr},

and

π3 = πrg|γl,γg
γl

/ πgf |{γl,γr}
{γl,γr},

where π1, π2, π3 ∈ L(R1) ∩ L(Gcb), {γl, γr} are virtual contact resources on the left

and right hands, γg is the gravitational virtual contact, and Γq is a set of joints

that are optimized by the kinematic posture controller. These three controllers are

illustrated in Figure 5.2. Although different, these three controllers share the function

of maintaining a bimanual grasp of the beach ball during execution.

As another example, consider the regular expression,

R2 = Ξ∗πg|Γσ
Γτ

Ξ∗,

where

πg|Γσ
Γτ
≡ φmr|σmr(Γσ)

τmr(Γτ) / φfr|σfr(Γσ)

τfr(Γτ) .

The intersection of the language of R2 and Gcb, L(R2) ∩ L(Gcb), describes the set of

controllers that are related to grasp synthesis in some way. Two examples are

φr|σr(γl)
τr(γl)

(
πgθ|γl,γg

γl

)
/ φf |σf (γl,γr)

τgf (γl,γr)(σc(γl, γr)),

132

(see in Equation 5.11) which rotates γl until it opposes gravity while continuing to

hold the object between γl and γr, and

φp|σp(γl,γr)
τp(γl,γr)

(
πgx|γl,γr

γl,γr

)
/ φf |σf (γl,γr)

τf (γl,γr) (κfσn(γl, γr)),

(see in Equation 4.31) which slides contacts γl and γr over the object surface (while

applying a force proportional to κf until they reach opposition. In these two examples,

the regular expression, R2, represents a class of controllers that share functionality

related to grasp synthesis. Both controllers in this example adjust contact configura-

tions so as to reach opposition configurations.

6.5.1 Action Abstraction

These classes of similarly functioning controllers suggest that generalized solutions

can be expressed as sequences of classes of controllers where controllers in each class

share functional similarities. The action schema expresses such general solutions by

defining a generalized policy over an abstract state and action space. Abstract actions

correspond to classes of controllers and abstract states denote the convergence status

of members of classes of controllers. Let R = {R1, R2, . . . , R|R|} be a set of regular

expressions that define disjoint sets of controllers,

∀Ri, Rj ∈ R, L(Ri) ∩ L(Rj) = ∅. (6.15)

A set of abstract actions is defined,

A′
R ≡ R. (6.16)

Since regular expressions correspond to disjoint classes of functionally similar con-

trollers, each underlying controller (control basis action) maps onto a single abstract

133

action:

∀a ∈ A, gR(a) = {Ri ∈ A′
R|a ∈ L(Ri)}. (6.17)

6.5.2 State Abstraction

Recall that in the control basis state representation, introduced in Section 3.4.2,

state was defined to be the set of pairs of artificial potentials and sensor transforms

that are currently converged with low error:

s = {(φi, σj) ⊆M|p((φi, σj)) = 1},

where M⊆ Φ×Σ is the set of artificial potentials and sensor transforms that satisfy

typing constraints and p((φi, σj)) is a binary predicate that is asserted when φi is

converged for σj.

Instead of converged pairs of artificial potentials and sensor transforms, abstract

state is defined to be the set of “currently converged” regular expressions. A regular

expression, Rk ∈ R, is “converged” when, for all pairs of artificial potentials and

sensor transforms in Rk, φ
σj

i , φi is converged for σj. If there is an un-paired artificial

potential, φΞ∗
i ∈ Rk, then some sensor transform must exist for which φi is converged.

This condition is encoded by the binary predicate, p′(Rk), defined over all Rk ∈
R. p′(Rk) is asserted when: 1) for every φi ∈ Rk, φi is converged for some sensor

transform with low error and 2) for every φ
σj

i ∈ Rk, φi is converged for σj with low

error:

p′(Rk) =





1 if ∀φi ∈ Rk, ∃σj ∈ Σ s.t. φi is converged with low error for σj

and

∀φσj

i ∈ Rk, φi is converged with low error for σj

0 otherwise.

(6.18)

134

The current abstract state is defined to be the set of regular expressions in R for

which p′ is asserted,

s′ = {Rk ∈ R|p′(Rk) = 1}. (6.19)

Whereas the underlying state, s ∈ S, represents the pattern of controller functions

that are currently converged with low error, abstract state, s′ ∈ S ′, represents the

pattern of classes of controller functionality that are currently converged. The set of

all abstract states is

S ′ = 2R. (6.20)

As with the underlying control basis state, abstract state can be represented as a bit

vector,

b′(s′) = p′(R|R|)p
′(R|R|−1) . . . p′(R1), (6.21)

where Ri is the ith regular expression in R. As with actions and abstract actions, a

correspondence exists between states and abstract states:

∀s ∈ S, fR(s) = {Rk ∈ R | ∀φσj

i ∈ Rk, p((φi, σj)) = 1 AND (6.22)

∀φi ∈ Rk, ∃σj ∈ Σ s.t. p((φi, σj)) = 1}.

6.5.3 The Abstract Transition Function

In the context of control-based approaches, the goal of schema structured learn-

ing is to discover which instantiations of the abstract policy lead to convergence of

every controller that executes. This condition is satisfied by any abstract transition

function, T ′ : S ′ × A′ → S ′, such that

a′ ∈ T ′(s′t, a
′). (6.23)

Since this condition can be satisfied in many different ways, the designer may encode

additional constraints in T ′.

135

Function schema structured learning
1. Repeat
2. Get current state, st ∈ S, and context, c ∈ C
3. Let B(st) = g−1(π′(f(st)))
4. Evaluate π∗(st, c) = arg maxa∈B(st) P ∗(a|st, c)
5. Execute π∗(st, c)
6. Get next state st+1 ∈ S
7. Update transition model P (success|st, c, a)
8. If action π∗(st, c) failed, break from loop.
9. While f(st) is not in an absorbing state.

Table 6.1. Schema structured learning algorithm.

6.6 Schema Structured Learning Algorithm

This approach to estimating the optimal policy instantiation is the basis of the

schema structured learning algorithm. Given an action schema and the appropriate

mapping, this algorithm learns the optimal policy instantiation online through a trial-

and-error process. Whereas many online trial-and-error learning algorithms can have

long learning times, the structure imposed by the action schema framework makes

schema structured learning practical for many real-life robot applications.

Schema structured learning gains experience by repeatedly executing policy in-

stantiations of the action schema. While the system initially executes random instan-

tiations of the abstract policy, performance quickly improves. Regardless of how poor

the performance is, the structure of the action schema’s abstract policy ensures that

each policy instantiation has the correct general outline. The algorithm is outlined in

Table 6.1. In step 3, the algorithm uses Equation 6.7 to evaluate the set of actions,

B(st), that are valid instantiations of the action schema abstract policy in the current

state, st ∈ S. For each action instantiation, step 4 calculates the probability that the

action is part of the optimal policy in the current state, st ∈ S and context, c ∈ C.

Step 5 executes this action, step 6 evaluates the outcome of the action, and step 7

incorporates this experience into the transition model.

136

Function Sample-based schema structured learning
1. Repeat
2. Get current state, st ∈ S, and context, c ∈ C
3. Let B(st) = Dst,c(π

′(f(st)))
4. Evaluate π∗(st, c) = arg maxa∈B(st) P ∗(a|st, c)
5. Execute π∗(st, c)
6. Get next state st+1 ∈ S
7. Update transition model P (success|st, c, a)
8. Update sample set in Dst,c based on P ∗

9. If action π∗(st, c) failed, break from loop.
10. While f(st) is not in an absorbing state.

Table 6.2. Sample-based schema structured learning algorithm.

As it is written in Table 6.1, schema structured learning has an execution time

exponential in the depth of the tree. This implies that the algorithm does not scale

well with the length of the sequence of actions. One way to reduce the computational

complexity is to store (memoize) the results of each computation of P ∗(a|st, c) in step

4 of the algorithm. This prevents repeated evaluations of P ∗(a|st, c) and gives the

algorithm a time complexity proportional to the size of the state-action space, S×A.

This is similar to the complexity of solving MDPs.

The algorithm presented in Table 6.1 maximizes P ∗ over all instantiations of

the abstract action, B(st) = g−1(π′(f(st))). It was noted in Section 6.4 that this

approach is unsuitable for very large or real-valued action spaces. Instead, a sample-

based strategy was proposed where the system maximized over a sample, Dst,c(a
′) ⊆

g−1(π′(f(st))), from the set of all action instantiations. As better estimates of the

probability distribution, P ∗, became available, it was proposed that the sample set

be updated so as to more densely sample actions near maxima in the distribution.

Table 6.2 illustrates the modified version of the Table 6.1 algorithm that implements

this strategy. In steps 3 and 4, the algorithm maximizes over the sample of the actions,

Dst,c(π
′(f(st))). In step 8, the algorithm updates the sample set based on the newest

137

probability estimates. This version of the schema structured learning algorithm was

used in the grocery bagging experiments described in Chapter 7.

Notice that the schema structured learning algorithm in Tables 6.1 and 6.2 imple-

ments a type of greedy exploration. Based on its current estimate of the transition

model, the algorithm always executes its best estimate of the optimal policy instantia-

tion. When the algorithm starts executing, the transition model is inaccurate and the

algorithm basically selects actions randomly, as long as they adhere to action schema

policy constraints. However, after a short time, the transition model improves to the

point that most exploration is focused on successful trajectories. Therefore, instead

of continually improving its transition model in all regions of the state-action space,

the algorithm tends to repeatedly visit regions near successful trajectories. While this

behavior is advantageous in many situations, Chapter 8 will describe drawbacks and

propose an alternative exploration strategy.

6.6.1 Example: Localize-Reach-Grasp

Consider a small example where schema structured learning learns to select reach

and grasp controllers that maximize the probability of grasp success as a function

of context. Assume that a humanoid robot is able to visually characterize an object

by executing a localize controller, πl. The controller determines the grasp context,

c. Also, assume that a humanoid robot has access to reach controllers that move

the manipulator to a desired position and orientation. The reach controller is a

composition of a position controller and an orientation controller,

πpr|Γpr

Γpr
(xo) ≡ φr|σr(Γpr)

τr(Γpr) (σr(γobj) + ro) / φp|σp(Γpr)
τp(Γpr) (σp(γobj)) ,

where σr(γobj) and σp(γobj) calculate the orientation and position of the object and

ro is an orientation offset. Assume that the robot can execute four instantiations of

the reach controller: πpr|{γl}
{γl}(rside), πpr|{γr}

{γr}(rside), πpr|{γl}
{γl}(rtop), πpr|{γr}

{γr}(rtop). In these

138

expressions, γl and γr denote the robot’s left and right hands, respectively, rside is an

offset to the side of the object and rtop is an offset to the top. Also, assume that the

robot has access to the sliding grasp controller of Equation 4.31,

πsgx|Γτ
Γτ
≡ πs|Γσ

Γτ

(
πgx|Γσ

Γτ

)
.

In this example, there are four instantiations of the grasp controller: πsgx|{γl1,γl23}
{γl1,γl23},

πsgx|{γl1,γl2,γl3}
{γl1,γl2,γl3}, πsgx|{γr1,γr23}

{γr1,γr23}, πsgx|{γr1,γr2,γr3}
{γr1,γr2,γr3}, where γl1, γl2, and γl3 denote three phys-

ical contacts on the robot’s left hand, γr1, γr2, and γr3 denote three physical contacts

on the right hand, and γl23 and γr23 are virtual contacts on the left and right hands.

Solutions to the problem of localizing, reaching toward, and grasping an object

can be understood as variations on the generalized localize-reach-grasp policy illus-

trated in Figure 6.2. These variations can be derived from classes of reach and grasp

controllers. These classes can be described as regular expressions over the alphabet,

Ξ. The class of reach controllers is

L(Rr) = {πpr|{γl}
{γl}(xside), πpr|{γr}

{γr}(xside), πpr|{γl}
{γl}(xtop), πpr|{γr}

{γr}(xtop)},

where Rr is the regular expression,

Rr = πpr|Ξ∗Ξ∗(Ξ
∗). (6.24)

The class of sliding grasp controllers is

L(Rg) = {πsgx|{γl1,γl23}
{γl1,γl23}, πsgx|{γl1,γl2,γl3}

{γl1,γl2,γl3}, πsgx|{γr1,γr23}
{γr1,γr23}, πsgx|{γr1,γr2,γr3}

{γr1,γr2,γr3}},

where Rg is the regular expression,

Rg = πsgx|Ξ∗Ξ∗ . (6.25)

139

Based on these classes of reach and grasp controllers, the localize-reach-grasp ac-

tion schema can be instantiated in sixteen different ways. When the localize con-

troller executes, it recovers contextual information regarding the object to be grasped

including object shape and object location. Assume that the system transitions to

state s2. Step 3 identifies the set of four potential reach actions. In step 4, the prob-

ability of a successful trajectory is calculated for each reach action, based on current

estimates of transition probabilities. Step 5 takes the reach action that maximizes

this probability. Finally, steps 6 and 7 incorporate the experience of this transition

into the transition model.

6.7 Summary

Control-based approaches recast robotics problems as a search for the correct

sequence or combination of controllers to execute. One approach to selecting an

appropriate sequence of actions analytically characterizes the controllers’ regions of

attraction and plans a solution [11]. Other approaches use reinforcement learning to

autonomously discover which sequence of controllers leads to achievement of a desired

goal [29, 4]. Neither of these approaches explicitly takes advantage of generalized

solution structure (although generalized structure is often known at design time.)

This chapter proposes schema structured learning, an algorithm that learns how to

apply a general solution in different problem contexts. This approach uses the action

schema formalism, a structure similar in spirit to Piaget’s schema [55], to represent

the general solution. The action schema encodes a generalized policy that narrows

the set of possible solutions. In addition, the action schema specifies an expectation

of desired transition behavior that simplifies the transition probability estimation

problem. This structure allows robotics problems encoded using an action schema

to be solved with less trial-and-error experience than problems represented using a

Markov Decision Process. Schema structured learning is a particularly useful way

140

of leveraging the structure inherent in the control basis to speed learning. With the

control basis, classes of controllers with related functionality can be expressed as

regular expressions and used to define an abstract state and action space over which

an action schema may be defined. The schema structured learning algorithm and

the action schema framework are tested extensively in the series of grocery bagging

experiments described in the next chapter (Chapter 7).

141

CHAPTER 7

LEARNING TO GRASP USING SCHEMA
STRUCTURED LEARNING

This chapter applies schema structured learning, introduced in Chapter 6, to the

grasp synthesis problem. Chapter 4 demonstrated that grasp controllers can effec-

tively use haptic feedback to lead a robot from a large domain of attraction to a good

grasp configuration by sliding contacts over an object surface. This approach requires

the grasp controller to begin execution within an appropriate domain of attraction

relative to the object. In addition, the time required to synthesize a grasp can be

reduced by reaching to an approximately good grasp configuration before executing a

grasp controller. This chapter investigates using schema structured learning to learn

how to reach to an object so as to maximize the probability of landing within an

appropriate domain of attraction and thereby minimizing grasping time.

Grasp synthesis is recast as a problem of deciding how to sequence a collection of

controllers defined using the control basis. These controllers include a visual tracking

controller, position controllers, grasp controllers, and grasp force controllers. The

visual tracking controller actuates pan and tilt degrees of freedom using visual feed-

back so as to track an object in the image foreground. By tracking the object, this

controller enables the robot to characterize the object with several channels of visual

information including object centroid, major axis, and minor axis. Two classes of po-

sition controllers reach the manipulator toward the object. The first class moves the

centroid of the manipulator contacts toward an offset position specified in the object

coordinate frame. The second class aligns the manipulator with a specified orien-

tation offset relative to the object major axis. Grasp controllers synthesize two- or

142

three-contact grasps using haptic feedback. Finally, force controllers apply grasping

forces sufficient to hold an object.

The above controllers are sequenced so as to reach configurations where grasp

controllers converge with low force and moment residual errors to positions from which

the object may be lifted. Schema structured learning is used to search variations of

a generalized reach-grasp policy for instantiations that are likely to achieve these

objectives in particular grasp contexts. Regular expressions are defined that classify

controllers into sets that share visual tracking functionality, motion functionality,

grasp functionality, and hold-object functionality. These classes are used to specify

an abstract state and action space over which the generalized policies are defined.

These generalized policies capture policy instantiations that are expected to contain

the grasp solution. The visual tracking controller first characterizes grasp context

with coarse visual features that describe the object. Schema structured learning

explores the space of reach and grasp solutions for different objects and discovers

context-appropriate instantiations of generalized grasp policies.

This approach is tested in a series of experiments. In the first experiment, the

learning performance of schema structured learning is characterized in the context

of learning to grasp a vertically presented, eccentric object. The next experiment

characterizes how well schema structured learning can select appropriate reach and

grasp policy instantiations as a function of object eccentricity and elevation angle.

Finally, in an experiment that quantifies how well learned grasp skills generalize to

new objects, schema structured learning learns how to grasp a variety of everyday

grocery items and drop them in a paper bag. In this experiment, a robot was trained

to grasp a small set of objects and tested on a much larger set of grocery items.

143

7.1 Controllers

The control basis re-formulates grasp synthesis as the problem of selecting a se-

quence of controllers that leads the system to a contact configuration that allows an

object to be grasped and lifted. This section describes a set of controllers appropriate

to this task.

7.1.1 Visual Tracking and Localization

Visually tracking an object potentially gives a robot access to an overwhelming

quantity of visual information. Unfortunately, much of this information is irrelevant

to grasping. What is needed are abstractions of visual information that are directly

related to potential grasp strategies. This chapter proposes that the centroid, first,

second, and third moments of an object constitute a coarse visual approximation

that contains important “first order” information that can inform the selection of a

grasp strategy. Grasp strategies based on coarse visual features such as these should

generalize well to different objects. In addition, these features can be calculated using

relatively simple visual processing techniques.

Visual tracking can be accomplished by a position controller that actuates a pan

and tilt camera so as to approach and follow a visual target. For the purposes of

the reach-grasp experiments described in this chapter, the visual target is assumed

to be a salient foreground blob (a “blobject”) in an image. Let σcent2(γimage) be the

centroid of the foreground blob in the image, γimage. Let σp(γpt) calculate the position

on the image plane where the pan-tilt unit, γpt, is pointing. Finally, let the effector

transform, τp(γpt), be the Jacobian that describes how pixels in the image plane move

as pan and tilt joint angles change. The resulting controller,

πt|γpt
γpt

(γimage) = φp|σp(γpt)
τp(γpt)

(σcent2(γimage)). (7.1)

actuates the pan-tilt joints, Γ, so as to track the blob centroid in the image, γimage.

144

(a) (b) (c) (d)

Figure 7.1. The robot characterizes objects in terms of an ellipsoidal fit to the
segmented object. (a) and (b) illustrate the left and right camera views of a squirt
bottle. (c) and (d) illustrate the corresponding segmented “blobs” and their ellipsoids.

The centroid of a foreground object in the base coordinate frame can be approx-

imated by triangulating on the centroids of the blobs in the stereo images. Define

a triangulation sensor transform, σtri : R2 × R2 → R3 that takes two image plane

disparities as input and outputs the corresponding triangulated position. This sensor

transform can be used to localize the Cartesian position of a foreground object [35],

σcent3(γl, γr) ≡ σtri(σcent2(γl), σcent2(γr)), (7.2)

where γl and γr are images from left and right stereo cameras, respectively.

Three-dimensional Cartesian moments of an ellipsoidal approximation of an object

can also be approximated from blobs in stereo images. Major and minor axes for the

two-dimensional blobs can be calculated from the eigenvectors and eigenvalues of the

covariance matrix. By triangulating on pixels at the ends of the major and minor

axes in the stereo pair, it is possible to calculate Cartesian lengths and directions

for these axes (see Figure 7.1.) Note that these triangulated axes are only rough

approximations of the actual moments of the Cartesian ellipsoid. Let σmaj2(γimage)

and σmin2(γimage) be vectors pointing from the blob centroid to the ends of the major

and minor axes in γimage. The Cartesian positions of the ends of these two axes in a

stereo pair are

145

σmaj3(γl, γr) ≡ σtri(σcent2(γl)± σmaj2(γl), σcent2(γr)± σmaj2(γr)) (7.3)

and

σmin3(γl, γr) ≡ σtri(σcent2(γl)± σmin2(γl), σcent2(γr)± σmin2(γr)). (7.4)

For the purposes of providing grasp context in this chapter’s grasp synthesis ex-

periments, it was found to be useful to transform the above sensor data into an object

position, length, eccentricity, and elevation angle. σcent3 calculates object position.

Object eccentricity is represented by the ratio between major and minor axes lengths,

σecc(γl, γr) ≡ ‖σmaj3(γl, γr)‖
‖σmin3(γl, γr)‖ . (7.5)

Elevation angle is

σφ(γl, γr) ≡ tan−1

(
z√

x2 + y2

)
, (7.6)

where (x, y, z)T = σmaj3(γl, γr) in the base frame, and object length is

σlen(γl, γr) ≡ 2‖σmaj3(γl, γr)‖. (7.7)

7.1.2 Reaching

Before grasping, a robot must move its manipulator through free space so as to

make contact. This can be accomplished using the position controller of Section 3.1.1,

φp|σp(Γm)
τp(Γm) (Xref). A key issue is determining which control resources should be used to

control the reach, i.e. which Γm ⊆ Γ. One approach is to define a control resource

attached to the palm of the hand and move the position and orientation of this palm

frame to a desired pose. A second alternative is to define control resources at a set of

possible grasp contacts and to move these resources toward desired positions. This

chapter combines elements of these two approaches by defining an opposition as a

control resource. Recall from Section 2 that Iberall defines an “opposition” to be a

146

set of contacts and the forces that they can apply [31]. In this chapter, two and three

contact oppositions are considered. The orientation of the two contact opposition is

determined by a line formed between the two contacts. The orientation of the three

contact opposition is determined by a plane (identified by its normal) that passes

through the three contacts.

Position and orientation of the opposition are controlled separately, using two

different parameterizations of the position controller. The position of the opposition

is controlled by a position controller parameterized by a virtual contact composed of

all contact resources in the opposition: γ12 = {γ1, γ2} for the two-contact opposition

and γ123 = {γ1, γ2, γ3} for the three-contact opposition. Since the position of a virtual

contact is the average position of its constituent contact resources (see Section 4.4.1),

a position controller parameterized by the virtual contact moves the centroid of the

contacts toward a reference configuration.

A position controller is defined that moves the virtual contact to a position be-

tween the visually located object centroid, σcent3(γl, γr), and the ends of the object

on the major axis, σmaj3(γl, γr)± σcent3(γl, γr), where γl and γr denote left and right

stereo images:

πpmaj|γa
γa

(κp) ≡ φp|σp(γa)
τp(γa) (σcent3(γl, γr)± κpσmaj3(γl, γr)) . (7.8)

This controller moves the virtual contact, γa, to a position 0 ≤ κp ≤ 1 between the

object centroid and the end of the major axis. The “±” in this equation denotes a

set of two symmetric reference positions on each side of the object centroid. This

controller moves toward the closest point in the set, using Equation 3.5.

The orientation of the opposition space is also controlled by a position controller

that moves the contact resources that constitute the opposition onto a line or plane

(for the two- or three-contact oppositions, respectively) corresponding to the desired

147

orientation of the opposition. So as not to bias the position controller, the origin of

the reference line or plane is always defined to be at the contact centroid. Let

line(x0, n̂line) = {x0 + tn̂line|t ∈ R}, (7.9)

be the set of points on a line passing through x0 with orientation n̂line. The position

controller that orients the two contacts, γ1 and γ2, in the direction of n̂line is:

φp|σp({γ1,γ2})
τp({γ1,γ2}) (line(σp(γ12), n̂line)),

where σp(γ12) is the centroid of γ1 and γ2.

A position controller can also be defined with respect to a plane. Let

plane(x0, n̂plane) = {x ∈ R3|n̂plane · (x− x0) = 0}, (7.10)

be the set of points on a plane passing through x0 with a normal n̂plane. The position

controller that orients three contacts, γ1, γ2, γ3, in the plane defined by the normal,

n̂plane, is:

φp|σp({γ1,γ2,γ3})
τp({γ1,γ2,γ3}) (plane(σp(γ123), n̂plane)),

where σp(γ123) is the centroid of γ1 γ2, and γ3.

The reference orientation in the above equations is defined in terms of a normal

vector on the unit sphere, n̂line ∈ S2 or n̂plane ∈ S2. However, this chapter specifies

the desired orientation of the opposition as a scalar angle, θ, between the vector,

n̂line or n̂plane, and the object major axis. Let σ̂maj3(γl, γr) be the unit vector directed

along the object major axis. The set of unit vectors at an angle of θ from σ̂maj3(γl, γr)

is

cone(σ̂maj3(γl, γr), θ) = {n̂ ∈ S2|σ̂maj3(γl, γr) · n̂ = cos(θ)}. (7.11)

The set of lines with origin at σp(γ12) and at an orientation of θ from the major

axis, σ̂maj3(γl, γr), is {line(σp(γ12), n̂)|n̂ ∈ cone(n̂m, θ)}. A set of planes with the

148

same parameters is plane(σp(γ12), cone(σ̂maj3(γl, γr), θ)). The position controller that

moves a two-contact opposition space to a reference orientation of θ relative to the

object major axis is,

πrmaj2|{γ1,γ2}
{γ1,γ2}(θ) ≡ φp|σp({γ1,γ2})

τp({γ1,γ2}) ({line(σp(γ12), n̂)|n̂ ∈ cone(σ̂maj3(γl, γr), θ)}) , (7.12)

where {γ1, γ2} is the set of contacts in the opposition, γ12 is a virtual contact composed

of γ1 and γ2, σ̂maj3(γl, γr) is a unit vector in the direction of the major axis, and θ is

the desired orientation of the opposition relative to the object major axis. Similarly,

the position controller that moves a three-contact opposition space into a reference

plane at an orientation of θ from the major axis is,

πrmaj3|{γ1,γ2,γ3}
{γ1,γ2,γ3}(θ) ≡ φp|σp({γ1,γ2,γ3})

τp({γ1,γ2,γ3}) ({plane(σp(γ123), n̂)|n̂ ∈ cone(σ̂maj3(γl, γr), θ)}) ,

(7.13)

where γ1, γ2, and γ3 comprise the three-contact opposition.

7.1.3 Other Controllers

In addition to visual tracking of and reaching to an object, in this chapter’s case

study, the robot grasps, holds, and lifts an object off of a table. These actions are

accomplished by controllers that have already been defined in this thesis. The sliding

grasp controller of Equation 4.31,

πsgx|Γσ
Γτ
≡ πs|Γτ

Γτ

(
πgx|Γσ

Γτ

)
,

slides contacts Γτ over the object surface so as to reach a good grasp configuration with

contacts Γσ, using tactile feedback alone. The grasp force controller of Equation 5.8,

πgf |Γm
Γm
≡ φf |σf (Γm)

τgf (Γm) (σc(Γm)) ,

149

holds an object by applying internal forces directed at the contact centroid. Finally,

the position controller executing in the nullspace of the grasp force controller, as in

Equation 5.9,

πtrans|Γm
Γm

(xref) ≡ φp|σp(Γm)
τp(Γm) (xref) / πgf |Γm

Γm

transports a grasped object to xref while maintaining grasp forces.

7.2 Localize-Reach-Grasp Action Schema

The structure imposed by the control basis is used to define classes of controllers

and an action schema that encodes the generalized behavior of visually locating,

reaching to, grasping, and lifting an object [59, 57].

7.2.1 A Classification of Controllers for Grasp Synthesis Tasks

The visual tracking, reach, grasp, grasp force, and transport controllers described

above can be classified in a way that reflects general structure in grasping tasks.

These classes can be expressed as regular expressions on an alphabet, Ξ, that parse the

language of control basis controllers, L(Ccb). The set of visual tracking controllers are

defined to be those position controllers that actuate pan and tilt degrees of freedom,

Rtrack = φp|C∗C∗ , Πtrack = L(Rtrack), (7.14)

where C ⊆ Γ is the set of control resources that actuate a camera. The set of reach

controllers can be defined as those primitive position controllers that actuate control

resources on the manipulator,

Rreach = Ξ∗φp|A∗A∗ , Πreach = L(Rreach), (7.15)

150

where A ⊆ Γ is the set of control resources that actuate the manipulator. Grasp

controllers are defined to be those that are referenced to a grasp parameterized by

manipulator control resources,

Rgrasp = Ξ∗πg|A∗A∗Ξ∗, Πgrasp = L(Rgrasp), (7.16)

where πg|Γσ
Γτ

= φmr|σmr(Γσ)
τmr(Γτ) / φfr|σfr(Γσ)

τfr(Γτ) . Grasp force controllers are those primitive

controllers that apply suitable grasp forces at manipulator control resources,

Rhold = πgf |A∗A∗ , Πhold = L(Rhold), (7.17)

where πgf |Γm
Γm

≡ φf |σf (Γm)

τf (Γm) (σc(Γm)). Finally, transport controllers are those that exe-

cute a position controller in the nullspace of a grasp force controller,

Rtrans = φp|A∗A∗ / πgf |A∗A∗ , Πtrans = L(Rtrans), (7.18)

where both controllers are parameterized by manipulator control resources. The set

of all the above regular expressions is,

Rlrg = {Rtrack, Rreach, Rgrasp, Rhold, Rtrans}, (7.19)

7.2.2 An Action Schema for Grasp Synthesis Tasks

The above classification of controllers can be used to define an action schema for

grasping. The set of abstract actions is,

A′
lrg = Rlrg, (7.20)

151

where each abstract action corresponds to a regular expression. These abstract actions

map onto disjoint sets of underlying controllers using Equation 6.17,

∀a ∈ A, g(a) = {Ri ∈ A′|a ∈ L(Ri)}.

The abstract state of the system is a bit vector that describes the set of regular

expressions for which an artificial potential is converged, i.e. the set Ri ∈ Rlrg for

which predicate p′(Ri) (Equation 6.18) is asserted:

s′ = {Rk ∈ Rlrg|p′(Rk) = 1}.

Equation 6.21 represents abstract state as a bit vector. For Rlrg, this is:

b′(s′) = p′(Rtrans)p
′(Rhold)p

′(Rgrasp)p
′(Rreach)p

′(Rtrack). (7.21)

The set of all abstract states is S ′lrg ⊆ 2Rlrg .

Abstract policies and transition functions for grasp synthesis encode the general

temporal structure of grasp tasks. An abstract policy for grasping an object without

holding or lifting it is,

π′lrg(00000) = Rtrack (7.22)

π′lrg(00001) = Rreach

π′lrg(00011) = Rgrasp,

where 00111 is an absorbing abstract state. An abstract policy that holds the object

and lifts an object in addition to reaching to it and grasping is:

π′lrght(00000) = Rtrack (7.23)

152

π′lrght(00001) = Rreach

π′lrght(00011) = Rgrasp

π′lrght(00111) = Rhold

π′lrght(01111) = Rtrans,

where 11111 is the absorbing state. The objectives of either abstract policy is captured

by an abstract transition function that requires each action in the sequence to converge

without causing a previous controller to become un-converged:

T ′
lrg(00000, Rtrack) = 00001 (7.24)

T ′
lrg(00001, Rreach) = 00011

T ′
lrg(00011, Rgrasp) = 00111

T ′
lrg(00111, Rhold) = 01111

T ′
lrg(01111, Rtrans) = 11111.

Two action schemata are defined based on the two abstract policies, π′lrg and π′lrght.

The first,

Slrg =
〈
S ′lrg, A

′
lrg, π

′
lrg, T

′
lrg

〉
, (7.25)

describes a sequence of controllers that localizes, reaches to, and grasps an object.

The abstract transition function, T ′
lrg, causes schema structured learning to select

reach controllers that maximize the probability of a successful grasp. The second

action schema,

Slrght =
〈
S ′lrg, A

′
lrg, π

′
lrght, T

′
lrg

〉
, (7.26)

incorporates the abstract policy, π′lrght, where the robot lifts the object after grasp-

ing. The abstract transition function requires the grasp force controller to remain

converged after transporting the object. As will be demonstrated in Section 7.4.2,

153

this enables the algorithm to learn to select grasp configurations that maximize the

probability of not dropping the object.

7.2.3 An Implementation of Schema Structured Learning for Grasp Tasks

This chapter describes a series of experiments that characterize the use of schema

structured learning to grasp objects with a real-valued context and action space. In

these experiments, a visual tracking controller recovers the real-valued centroid and

the major and minor axes of the object. These blob characteristics constitute context,

c ∈ C, that conditions schema structured learning’s estimates of P (success|st, c, a). In

addition, the reach controllers used in the experiments, πpmaj|γa
γa

(κp), πrmaj2|γ1,γ2
γ1,γ2

(θ),

and πrmaj3|γ1,γ2,γ3
γ1,γ2,γ3

(θ), are parameterized by real-valued position and orientation offsets,

κp and θ, respectively.

k-nearest neighbor (see Section 2.4.3) was used to estimate P (success|st, c, a) based

on previous experience. Given a query for the probability of success of action a taken

from state st and context c, the outcome of the k actions nearest (using a Euclidian

distance metric) st, c, and a were averaged. The outcome of non-grasp actions was

either 1 or 0, depending upon whether or not the resulting state transition adhered to

action schema transition constraints, i.e. whether the action succeeded or failed. If

the action was a grasp controller, then the outcome of the grasp action was inversely

proportional to the controller error at grasp convergence. Executions of the grasp

controller that converged to a high error value had outcomes close to zero while

executions that converged to low error values had outcomes close to one.

Because of the real-valued set of reach actions available for execution, this Chap-

ter’s experiments used the sample-based version of schema structured learning given

in Table 6.2. In this version of the algorithm, the probability of a successful trajec-

tory is maximized over a fixed-size random sample, Dst,c, from the real-valued set of

154

actions. The sample set was weighted so as to more densely sample actions associated

with successful policy instantiations, given current state and context.

7.3 Learning Performance of localize-reach-grasp

The performance of schema structured learning was characterized in a series of

experiments where Dexter (see Appendix C) started from scratch and repeatedly

attempted to grasp a vertically-presented towel roll [57]. In these experiments, Dexter

used the localize-reach-grasp action schema, Slrg, that first visually tracks an object

using a tracking controller, π ∈ Πtrack, then reaches to the object using a position

controller, π ∈ Πreach, and finally grasps the object using a grasp controller, π ∈
Πgrasp. As the learning system acquires experience, it learns to select a reach controller

that maximizes the probability of a successful grasp. This section presents results that

characterize the mean and median learning performance of the algorithm.

In this experiment, the learning problem was simplified by constraining the num-

ber of localize-reach-grasp policy instantiations. This made it easier to repeat the

experiment on the physical robot. Instead of allowing both left- and right-handed

reaching and grasping, these experiments limit the system to using a single hand. In

addition, reach and grasp controllers are constrained to be parameterized by a three-

contact opposition space. In this constrained version of the problem, Dexter must

select the reach controller parameterized with the correct position and/or orientation

offset such that grasping succeeds.

In each experiment, Dexter attempted to localize, reach, and grasp the towel roll

shown in Figure 7.2 26 times. At the beginning of each trial, the towel roll was placed

vertically in approximately the same tabletop location. Then, schema structured

learning executed until either the goal state was reached or an action failed. In either

case, the trial was terminated, the system reset, and a new trial was begun.

155

Figure 7.2. The towel roll used in these experiments was a cylinder 10 cm in diameter
and 20 cm high.

The results (illustrated in Figures 7.3 and 7.4) report on median and mean data

over the eight experiments. Figure 7.3 reports the median initial moment residual

error (for an explanation of moment residual error, see Section 4.1.3) at the start of

grasp controller execution as a function of trial number. Trial number denotes the

number of localize-reach-grasp sequences executed so far in the current experiment.

Figure 7.4 shows manipulator orientation as a function of trial number. The horizontal

axis measures the orientation between the plane described by the three contacts and

the object major axis in radians. When this angle is π/2 radians (90 degrees), the

plane of the contacts is perpendicular to the major axis of the object. The black line

in the middle shows mean orientation and the error bars plot one standard deviation

above and below the mean.

These results show that, on average, the system learns to improve its reaching and

grasping skill as experience accumulates. In particular, schema structured learning

learns which instantiations of the reach controller lead to low grasp error in the

context of the localize-reach-grasp action schema. Figure 7.3(a) shows that as Dexter

continues to execute localize-reach-grasp trials, the mean and standard deviation of

initial grasp error on each trial drops. By the 10th or 15th trial, average initial grasp

error has dropped to a mean value of less than 0.001 Newton-meters.

156

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7
x 10

−3

Episode

M
ed

ia
n

 In
it

 M
o

m
en

t
R

es
id

Figure 7.3. Median grasp performance of schema structured learning over eight
experiments. In each experiment, Dexter learned to grasp a vertically-presented towel
roll by making 26 localize-reach-grasp trials. The horizontal axis is trial number and
the vertical axis is the mean initial moment residual. The lower the moment residual,
the high the quality of the grasp. Notice that performance improves until leveling off
at a near-zero error between trials 10 and 15.

Figure 7.4 shows that this improvement in initial grasp error is a result of a bet-

ter reaching strategy. This plot shows that the improvement in initial grasp error

is mirrored by a change in reach controller orientation offset. As the system accu-

mulates experience, Dexter begins selecting reach controller orientation offsets closer

and closer to π/2 radians from (perpendicular to) the object major axis. In these

configurations, Dexter is able to form a concurrent grasp with a low force and moment

residual error where the forces applied by the three contacts intersect in a point.

7.4 Conditioning on Blob Eccentricity and Orientation

Schema structured learning can be used to condition reach and grasp choices based

on visual contextual information such as elevation angle of the object major axis, σφ,

major axis length, σlen, the ratio between major/minor axis lengths, σecc, and object

157

Figure 7.4. Mean hand orientation (in radians) just after reaching and before exe-
cuting the grasp controller averaged over the eight experiments. The horizontal axis
is trial number and the vertical axis is the orientation of the manipulator with re-
spect to the major axis. Orientation is the angle between the normal of the plane and
the major axis of the object. Orientations near π/2 radians represent configurations
where the hand is perpendicular to the major axis. Notice that after 10 or 15 trials,
the robot has learned to reach to an orientation roughly perpendicular to the object’s
major axis.

position, σcent. In the following experiments, Dexter was alternately presented with

two objects or object configurations that differed in one of the above dimensions.

Using schema structured learning, Dexter discovered that it is unnecessary to specify

a desired orientation when grasping a non-eccentric object. When the object is eccen-

tric, Dexter learned to orient its manipulator (i.e. the opposition) perpendicular to

the object major axis and to grasp the object near its center if the object is presented

horizontally (relative to gravity).

7.4.1 Learning to Ignore Object Orientation When Appropriate

An important determinate as to which type of reach is appropriate for a given

object is its eccentricity. When grasping eccentric objects, alignment of the opposition

with principle axes is frequently important. In contrast, for non-eccentric objects,

158

(a)

(b)

Figure 7.5. In this experiment, Dexter alternately attempted to grasp an eccentric
object and a round object. The eccentric object was a towel roll 20cm tall and 10cm
in diameter. The round object was a plastic ball 16cm in diameter.

visual estimates of the directions of the blob axes are noisy and should be ignored

during reaching.

In this experiment, Dexter executed instantiations of Slrg to reach to and grasp an

eccentric object and a round object (illustrated in Figure 7.5) 40 times in alternation.

Schema structured learning initially executed random instantiations of the reach and

grasp abstract actions. As learning progressed, the algorithm focused exploration

on reach and grasp parameterizations that were expected to result in good grasps.

In this experiment, the generalized grasp action specified by the regular expression,

Rgrasp, had only one three-contact instantiation, πsgx|γ1,γ2,γ3
γ1,γ2,γ3

. This grasp controller al-

ways executed on the action schema’s grasp step. The set of allowed reach controllers

was constrained to only include those parameterized by the three contact resources,

{γ1, γ2, γ3}. This included the position controller, πpmaj|γ123
γ123

(κp), that reaches to po-

sitions along the object major axis without specifying orientation. This controller

moves the virtual contact, γ123, i.e. the centroid of the set of contact resources,

γ1, γ2, γ3, to the “closest” orientation that reaches the desired position. Also included

was a composite reach controller that executes an orientation controller in the null

159

space of a position controller,

πrmaj3|γ1,γ2,γ3
γ1,γ2,γ3

(θ) / πpmaj|γγ123
γγ123

(κp).

This controller concurrently orients the plane defined by the three contacts, γ1, γ2, γ3,

to an offset of θ from the major axis and moves the contact centroid to position at a

fraction of κp between the center and one end of the object major axis.

Position Position and Orientation
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Reach Type

P
ro

b
ab

ili
ty

Round

Round
Eccentric

Eccentric

Figure 7.6. Conditioning on eccentricity: the four bars in this graph show the
maximum estimated probability of grasp success (for round and eccentric objects)
when reaching to both a position and orientation, and when reaching to a position
without specifying orientation.

Figure 7.6 shows the maximum probability of successfully grasping both the round

object (the ball) and the eccentric object (the vertical towel roll). The two bars labeled

“Position and Orientation” are the maximum probabilities of a successful grasp when

both position and orientation reach objectives were specified. The two bars labeled

“Position” are the maximum probabilities of a successful grasp given a reach where

only a position objective is specified. For each reach type, results are given for the

eccentric and non-eccentric object. They show that for the eccentric object, a much

higher probability of success can be achieved when both position and orientation

160

(a) (b)

Figure 7.7. Conditioning on eccentricity: (a) probability of grasp success when
reaching to a round object by specifying a position goal alone. (b) probability of
grasp success when reaching toward an eccentric object by specifying both position
and orientation. In (a), the system learns that a reach to a position around 0.4
is correlated with a high rate of grasp success. In (b), the system learns that in
order to grasp an eccentric object, the manipulator must be oriented approximately
perpendicular to the object major axis and it must be positioned correctly between
the object center and the edge.

offsets are specified. In contrast, for the round object, it is possible to achieve high

success rates using either type of reach controller.

This result is explored further in Figure 7.7. Figure 7.7(a) shows the probability

of successful grasp of the ball as a function of position offset when a reach controller is

selected that leaves orientation unspecified. This probability is maximized when the

manipulator is approximately 0.4 of the distance along the object major axis starting

from the middle. The robot does not learn to reach directly toward the reported

center of the ball because of an error in the visually located position. Figure 7.8

shows the blob that image-based background subtraction acquires for the ball. The

shadow in the image (the ring around the bottom of the ball) artificially enlarges the

blob that is mistakenly attributed to the object. Since the vision system believes the

161

Figure 7.8. The ball, as it is perceived by the vision system. Notice that the vision
system “sees” a halo around the bottom that is caused by the ball’s shadow. This
halo confuses the vision system and causes it to estimate the position of the object
centroid too low.

object is larger than it actually is, its calculation of centroid position is inaccurate.

Schema structured learning compensates for this reaching toward a non-zero position

offset.

Figure 7.7(b) is a contour plot that shows the probability of grasp success as a

function of position and orientation. The horizontal axis is the proportion of the

distance along the object major axis (κp in Equation 7.8) for which the position

controller, πpmaj, is converged. The vertical axis is the angle between the the unit

vector describing the orientation of the plane of the three contacts and the major axis

of the object (θ in Equation 7.12). Figure 7.7(b) shows that Dexter has learned that

the probability of grasp success is maximized when the plane of the three contacts

is oriented nearly perpendicular to the object major axis. On the position axis, the

probability of success is maximized when the manipulator is about 0.5 of the distance

between the middle and the end of the object. This is because reaches to the middle

of the major axis can cause the manipulator to collide with the object, and reaches

too far to the end of the major axis can cause the manipulator to miss it entirely.

162

(a) (b)

Figure 7.9. Conditioning on elevation angle: results of learning to lift an eccentric
object when it is presented horizontally, (a), versus when it is presented vertically,
(b). (a) shows that the robot learns to grasp the object near its center of mass when
it is presented horizontally. In (b), the system learns that position does not matter
when the object is presented vertically. Note that regardless of the vertical elevation
of the box, the system learns to orient its grasp perpendicular to the object major
axis.

7.4.2 Learning the Effect of Object Center of Gravity

When an eccentric object is presented horizontally (relative to gravity), attempt-

ing to grasp it far away from its center of gravity (CG) can prevent the manipulator

from applying reference grasp forces. However, this is not a problem when the object

is presented vertically. In either case, it is necessary to orient the contact opposition

perpendicular to the object major axis. This experiment explores these issues us-

ing the localize-reach-grasp-hold-transport action schema, Slrght. An eccentric object

measuring 27x7x7cm (the butter cracker box) was alternately presented horizontally

and vertically. The system used two-fingered reaches and grasps in a series of 35

attempts to grasp and lift the box. In addition to visually tracking, reaching, and

grasping, Slrght also applied a grasp force and lifted the object.

163

Of special note in this experiment is that the the grasp force controller, πgf |Γm
Γm

,

converges to configurations where the contacts apply the reference force, σc(Γm).

When the object is suspended in the air, gravity acts as an additional force on the

object at its CG. If the object is grasped far away from the CG, then gravity can apply

a large torque about the contacts. This can cause the contacts to experience large

non-reference forces that cause the grasp force controller to cease to be converged

when the object is lifted. This changes the control basis state of the system and

results in a transition that violates the action schema transition constraints. In this

experiment, Dexter learns to grasp the object near the CG so as to maximize the

probability of a successful lift.

Figure 7.9 shows two contour plots that illustrate the estimated probability of

success for two different object elevation angles. The plots show the estimated prob-

ability of grasp success at different manipulator positions and orientations relative to

the object. The horizontal axis is the proportion of the distance along the object ma-

jor axis (κp in Equation 7.8) for which the position controller, πpmaj, is converged. The

vertical axis is the angle between the the unit vector describing the orientation of the

opposition and the major axis of the object (θ in Equation 7.12). Figure 7.9(a) shows

the distribution of success probabilities discovered by schema structured learning for

a horizontally presented eccentric object (relative to gravity). Figure 7.9(b) shows the

learned distribution for a vertically presented eccentric object. In Figure 7.9(a), the

robot has learned that for horizontal eccentric objects, the probability for a successful

lift is maximized when the object is grasped near the center of its major axis (near

the object CM). In Figure 7.9(b), the robot has learned that position along the major

axis does not matter when an eccentric object is presented vertically. Nevertheless,

for eccentric objects at either elevation angle, the robot learns to orient its contact

opposition perpendicular to the object.

164

(a) (b) (c)
(d)

(e)

Figure 7.10. The five training objects used in the generalization experiment.

7.5 Generalization to New Objects

Grasp skills such as those learned in the last section are expressed in terms of

coarse visual features and therefore generalize well to new objects. This section

performs cross-validation to test this generalization. The system is trained using one

small set of objects and tested using another larger set. It is shown that reach-grasp

skills learned in the context of the small set of training objects can improve the

system’s general reach-grasp performance for many other objects.

The system was trained using the five objects shown in Figure 7.10. The butter

cracker box (Figure 7.10(e)) was always presented horizontally. For each of the five

training objects, schema structured learning learned to grasp and lift it over the course

of approximately 60 trials. The localize-reach-grasp-hold-transport skills learned in

the context of the five training objects were tested on the 19 different test objects

shown in Figure 7.11. For each test object, the localize-reach-grasp-hold-transport

action schema, Slrght was executed 16 times: eight times without using the experi-

ence acquired from the test objects and eight times with this experience. In this

experiment, Dexter was constrained to execute only two-fingered reaches and grasps.

During the eight executions that tested performance without experience, schema

structured learning essentially selected random instantiations of the action schema.

During the eight executions that did use the training data, the algorithm essentially

interpolated the action schema instantiation from among the neighboring training

165

(1) (2) (3) (4)

(5) (6) (7) (8)

(9) (10) (11) (12)

(13) (14) (15) (16)

(17) (18) (19)

Figure 7.11. The 19 test objects used in the generalization experiment.

objects. With regard to the algorithm, each object was represented as a point in the

three-dimensional feature space of σecc, σlen, and σφ (see Figure 7.15). The algorithm

effectively interpolates the action schema instantiation based on a Euclidean distance

metric in this space.

Figure 7.12 illustrates the results. The pairs of bars on the horizontal axis corre-

spond to moment residual error at the beginning of grasp controller execution with

and without learning for each of the 19 test objects shown in Figure 7.11 (for more

166

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

0.005

0.01

0.015

Object Number

In
it

. M
o

m
en

t
R

es
id

u
al

Figure 7.12. Generalization: results show that experience grasping a few training
objects improves the robot’s ability to grasp objects that it has never seen before.
The pairs of bars on the horizontal axis show grasp error with (the leftmost bar in
each pair) and without (the rightmost bar in each pair) learning experience for each
of the 19 test objects. The error bars show a 95% confidence interval around the
mean.

167

With Learning Random
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−3

In
it

. M
o

m
en

t
R

es
id

u
al

(a)

With Learning Random
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
. o

f
H

o
ld

 S
u

cc
es

s

(b)

Figure 7.13. Generalization: (a) shows the initial moment residual with and without
learning averaged over all 19 objects. (b) shows the average probability of successfully
lifting each object with (the leftmost bar) and without (the rightmost bar) training
experience. In both plots, the error bars show 95% confidence intervals.

information on moment residual, see Section 4.1.3). This is the moment residual error

after completing the reach to the object, but before executing the grasp controller.

A low moment residual error indicates that the manipulator is close to a good grasp

configuration. The rightmost bar in each of the 19 pairs shows the mean initial mo-

ment residual averaged over eight trials that did not benefit from the skills learned

on the training set. The leftmost bar in each pair shows the mean initial moment

residual over the eight trials that did use the training data. The error bars around

the solid line give a 95% confidence interval around the mean. Although confidence

intervals with and without learning overlap for most of the objects, there is a general

trend across all 19 objects that learning improves (lowers) expected grasp error.

Since the confidence intervals for many of the objects overlap, the statistical sig-

nificance of the results for each object was analyzed using a two-sample t-test. This

test calculated the probability that, for each individual object, learning improved the

probability of reaching to a low moment residual. Table 7.1(a) shows the t statistic

168

Object t value
1 2.49
2 1.53
3 1.49
4 3.16
5 0.10
6 1.44
7 1.74
8 2.52
9 0.53
10 3.28
11 1.51
12 1.63
13 2.65
14 1.64
15 2.56
16 1.55
17 0.19
18 1.05
19 3.43

Table 7.1. t values for each of the 19 objects in the generalization experiment.

for each object. Objects 1, 4, 8, 10, 13, 15, and 19 have values for t that exceed 1.761,

indicating that there is a more than 95% probability that learning has improved per-

formance for these objects. If the requirement is lowered to 90%, then the threshold

falls to 1.345. For all of the objects except for 5, 9, 17, and 18 there is at least a 90%

chance that learning has improved grasp performance.

Since the above statistical analysis considers each object independently, the re-

sults do not reflect the trend across all 19 objects. Taken over all objects, the average

improvement in grasp performance is significant. Figure 7.13(a) shows the initial

moment residual with and without learning averaged over all 19 objects. The figure

shows that after having trained on the set of five objects, when presented with a new

(but related) object, schema structured learning can be expected to select an instan-

tiation of the reach controller that leads to an initial moment residual of 0.0015N-m

169

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Object Number

P
ro

b
. o

f
H

o
ld

 S
u

cc
es

s

Figure 7.14. Generalization: the robot’s experience grasping the five test objects
improves the probability of successfully grasping and lifting the 19 objects (shown on
the horizontal axis) that it has never seen before. The pair of bars for each object
show the average probability of successfully holding and lifting each object with (the
leftmost bar in each pair) and without (the rightmost bar) training experience.

with a 95% confidence interval of less than 0.0005N-m. Without learning, Dexter can

be expected to do almost three times worse, reaching to an initial moment residual

of 0.0042N-m with a 95% confidence interval of 0.0008N-m.

Figure 7.14 analyzes the performance of grasping in terms of the probability of

successfully holding and lifting the object. Recall that a lift is only successful if

the grasp force controller continues to be able to apply reference internal forces. This

condition was violated if the object slipped from the grasp or Dexter grasped an object

far from its CG. Figure 7.14 shows the probability of successfully holding the object

170

after the lift (transport controller) has executed for each of the 19 test objects. In each

pair, the leftmost bar shows performance after learning and the rightmost bar shows

performance without learning. In almost all cases, the probability of a successfully

holding the object is greater with learning experience than without. Figure 7.13(b)

shows the probability of a successful lift averaged over all 19 objects with and without

learning. When the identity of the object to be grasped is unknown, Figure 7.13(b)

shows that the probability of successfully lifting the object is much better when the

robot leverages its previous experience with the training objects.

This experiment demonstrates that it is possible to learn general reach-grasp skills

based on experience with a limited set of objects and apply these skills to new objects.

Although the experimenter selected the 19 test objects, they are a representative

sampling of a large class of objects that can be found in most grocery stores. This

is illustrated in Figure 7.15. This figure shows each of the 24 objects in the training

and test sets as a point in the two dimensional space of scale and eccentricity. The

five training objects are represented as large dots and the rest of the objects are the

test set. Notice that the test objects are approximately clustered around the line

x = y. Objects outside of this cluster are not one-hand-graspable using Dexter’s

Barrett hand. An example of an object that might appear on the lower right is a

beach ball. An example of an object that might appear on the upper left is a needle.

Since the set of test objects covers the space of one-hand-graspable objects fairly well,

this figure shows that, at least in terms of scale and eccentricity, the set of test objects

is representative sample.

7.6 Summary

This chapter proposes an approach to grasp synthesis based on schema structured

learning. In schema structured learning, the action schema encodes a generalized

policy that may be instantiated by different controllers that perform the same general

171

Figure 7.15. The set of objects used in the generalization experiment. The hor-
izontal axis represents object major axis length; the vertical axis represents object
eccentricity. Each dot represents an object, plotted as a coordinate in the eccentricity-
length space. The five large dots represent the training objects used in the general-
ization experiment. The 19 small dots represent the test objects. Notice that the test
objects cover the eccentricity-length space fairly evenly. (Objects far from the line
x = y are not one-hand graspable.)

172

functions. Applied to the grasp synthesis problem, the robot learns how to instantiate

an abstract reaching and grasping policy as a function of visual or haptic grasp

context. The robot learns by attempting to grasp different objects that are presented

to it until it consistently succeeds. At the beginning of each reach-grasp attempt,

the robot characterizes the object to be grasped in terms of coarse visual features

that include object position and the lengths and directions of its principle axes. This

characterization of the object is easy to implement and is highly relevant to grasping in

a variety of different situations. Based on these generalizable object characteristics,

the system learns which reach and grasp controllers are most likely to lead to a

successful grasp.

Learning performance is characterized in a series of experiments where Dexter,

the UMass bimanual humanoid, learns to grasp objects with different characteristics.

In the first experiment, Dexter learns to grasp a vertical eccentric object. The exper-

iment is repeated eight times and shows that, on average, schema structured learning

using the localize-reach-grasp action schema can quickly learn (within 10 to 15 trials)

the correct relative orientation and position of the manipulator that maximizes the

chances of grasp success.

This chapter also describes two experiments that demonstrate that schema struc-

tured learning can condition its choice of grasp strategy on object eccentricity and

elevation angle. In one experiment, schema structured learning discovered that it is

unnecessary to specify orientation objectives when reaching toward a round object.

However, Dexter also learned that, when the object was eccentric, grasp error was

minimized when the plane of its grasp contacts was oriented perpendicular to the

object major axis. In another experiment, Dexter learned that for eccentric objects,

the appropriate grasp strategy depended upon the elevation angle of the major axis.

If the major axis was horizontal (relative to gravity), it was important to grasp the

object near the center of gravity so as to improve the probability of lifting without

173

dropping. However, for objects presented vertically, grasping the object at different

points along the major axis did not affect the probability of grasp success.

Finally, this chapter characterizes how well learned grasp strategies generalize to

objects that the robot has no experience with. After acquiring extensive experience

grasping and lifting a set of five training objects, grasp performance was tested on

a set of 19 different everyday grocery items. Dexter attempted to grasp each of

the 19 test objects eight times using its training experience. The performance was

compared to attempts to grasp that did not benefit from the training experience. The

results show that, although confidence intervals were large, the training experience

significantly improved grasp performance for most of the 19 objects. Moreover, when

the results are averaged over all 19 objects, schema structured learning improved

performance compared with random reach grasp behavior by a large margin.

174

CHAPTER 8

CURIOSITY-BASED EXPLORATION IN SCHEMA
STRUCTURED LEARNING

One drawback with schema structured learning as it is presented in Section 6.6 is

that it is unable to discover new solutions once good policy instantiations have been

found. This is a result of the way the current version of schema structured learning

selects actions that maximize the probability of success. By preferring to execute

the good policy instantiations that have been discovered, schema structured learning

neglects to explore other potential solutions. This chapter proposes curiosity-based

exploration, a new exploration method that does not have this problem. Curiosity-

based exploration selects actions based on recent changes in estimated value. It favors

actions for which the probability of a successful trajectory has improved the most.

Section 8.2 experimentally characterizes the problem with selecting actions exclusively

in order to maximize current performance. Section 8.3 proposes curiosity-based ex-

ploration in the context of schema structured learning and Section 8.4 demonstrates

that schema structured learning using curiosity-based exploration outperforms learn-

ing using random exploration.

8.1 Background

The intuitive concept of curiosity has been used by many researchers as inspiration

for exploration algorithms, particularly in connection with reinforcement learning

(RL). In these approaches, the robot becomes “curious” about things that appear

“interesting” and takes steps to explore these states and actions. Some of the earliest

175

work in this vein is by Schmidhuber who, in his basic principle, proposes that the

robot maintains a world model and takes actions that are expected to improve this

model [73]. In particular, the system should maximize the sum of absolute value

changes in model reliability (it is assumed that all changes in the model make it more

accurate). This approach motivates the robot to explore regions of the world that are

not well modeled. A similar approach is proposed by Kaplan and Oudeyer [34]. They

propose taking actions so as to maximize learning progress. Assuming that a measure

of model error exists, they define learning progress to be the difference between model

error in the current and last time steps. Other authors address the exploration versus

exploitation problem using similar ideas without specifically referencing “curiosity.”

Dearden, Friedman, and Andre propose a measure of model improvement based on the

value of perfect information, or VPI [19]. In their approach, the VPI for a particular

state-action pair measures the difference between the current expected utility of the

system and what the expected utility would be given perfect information regarding

the transitions originating in that pair. By taking actions with a large VPI, the

system maximizes the improvement in expected future performance. This approach

anchors the concept of a “curious” exploration strategy firmly in the objective of

improving future performance.

This chapter takes an approach most similar to that of Schmidhuber [73] and

Kaplan and Oudeyer [34]. As in those approaches, this chapter’s approach prefers

actions that are expected to improve model accuracy. Actions associated with re-

cent changes in model output are preferred. However, in contrast to Schmidhuber

and Kaplan and Oudeyer, this chapter’s approach also includes a measure of action

quality. Actions accrue high exploration values for model changes associated with

improved probabilities of success. For example, the exploration approach proposed

in this chapter does not accord a high exploration value to an action with a surpris-

176

ing outcome unless that outcome improves the probability that a particular policy

instantiation will succeed.

8.2 Greedy Action Selection

The schema structured learning algorithm proposed in Section 6.3 repeatedly

chooses actions to execute. While it is desirable for the algorithm to maximize current

performance (i.e. exploit current knowledge), it may be possible to improve future

performance by spending a little time exploring different possible solutions. The

schema structured learning algorithm proposed in Section 6.6 addresses this tradeoff

decidedly in favor of exploitation. This algorithm always selects the policy instantia-

tion that maximizes the probability of satisfying action schema transition constraints.

It evaluates each candidate action and selects the one it estimates most likely to cause

the robot to transition correctly, i.e. to transition in a way consistent with the action

schema abstract transition function. This strategy will be referred to as “greedy”

action selection. It biases the algorithm away from sampling actions significantly

different from those with the largest estimated probability of success and makes the

algorithm susceptible to local maxima. If all actions nearby a non-global maximum

have a lower estimated probability of success, then the greedy action selection strat-

egy is likely to continue to sample actions from the local maximum, even if better

actions (those with a higher probability of success) exist.

The focus of exploration on action schema instantiations that are known to work

can cause the schema structured learning algorithm to miss other viable solutions.

This is demonstrated in an experiment where Dexter, the UMass bimanual humanoid,

used schema structured learning to learn instantiations of the localize-reach-

grasp action schema that successfully grasped the vertical cylinder (towel roll) shown

in Figure 7.2. The system was allowed to grasp using either two or three fingers on

the right hand. The system iteratively executed 27 trials of schema structured learn-

177

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Episode

P
ro

ba
bi

lit
y

Probability of a 2−Finger Grasp

(a)

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Episode

P
ro

ba
bi

lit
y

Probability of a 3−Finger Grasp

(b)

Figure 8.1. The probability that schema structured learning with greedy action se-
lection selects a two-fingered reach-grasp policy instantiation, (a), or a three-fingered
policy instantiation, (b). Notice that after the initial few reach-grasp trials, the robot
learns to attempt two-fingered grasps persistently. (Data averaged over four experi-
ments.)

ing. Figure 8.1 shows results averaged over four experiments (two conducted on the

hardware and two in simulation) where the system executed 27 reach-grasp trials per

experiment. In both graphs, the horizontal axis is trial number. The vertical axis

is the probability averaged over four experiments of selecting a two-fingered grasp

(Figure 8.1(a)), or the probability of selecting a three-fingered grasp (Figure 8.1(b)).

These two graphs show that while schema structured learning tried both two- and

three-fingered grasps with even probability at first, after only a few trials, the system

developed a clear preference for the two-fingered grasp. Since it is possible for the

robot to grasp the vertical cylinder using either two fingers or three fingers, one might

expect schema structured learning to discover both grasp strategies. However, it does

not learn both solutions because it discovers the two-fingered grasp strategy first, and

because of greedy action selection, prefers to continue using that solution instead of

attempting new grasps.

178

(a) (b)

Figure 8.2. Two possible grasps of a cylinder. In (a), the Barrett hand has realized
an optimal three-fingered grasp. In (b), the robot is unable to form a grasp because
the two fingers on the sides of the cylinder cannot reach the other end. The robot
cannot escape this configuration without reaching to a different location or selecting
a different grasp controller.

But, why does the robot discover the two-fingered grasp first? As discussed in

Chapter 4, finger workspace limitations can introduce local minima into the grasp

error function and thereby cause the grasp controller to tend toward poor grasps

when it begins execution from the “wrong” initial configurations. Figures 4.4 and 4.8

indicate that while this can affect two-fingered grasps, it is a particular problem

for three-fingered grasps. This is illustrated in Figure 8.2. Figure 8.2(a) shows the

Barrett hand successfully grasping the cylinder by opposing the three fingers in a top

grasp. Figure 8.2(b) shows the three-contact grasp controller in a local minimum,

where the Barrett hand is attempting to slide the two fingers on the sides of the

cylinders down to the opposite end of the cylinder. The hand cannot reach this

configuration because of finger workspace limitations. Once the Barrett hand has

reached a configuration similar to that illustrated in Figure 8.2(b), it cannot reach the

configuration of Figure 8.2(a) without ascending the moment residual error function.

Essentially, the domain of attraction that leads toward poor grasp configurations for

three-fingered grasps is larger than that for two-fingered grasps. Since, at the start of

learning, schema structured learning reaches to random hand-object configurations,

179

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Episode

M
ax

im
u

m
 P

ro
b

ab
ili

ty

Figure 8.3. Performance of schema structured learning using greedy action selection.
The solid line shows the estimated maximum probability of success of a two-fingered
reach-grasp policy. The dotted line shows the maximum probability of success of a
three-fingered reach-grasp policy. Since schema structured learning does not attempt
any three-fingered grasps after the first few trials, the estimated value of three-fingered
reach-grasp policies never improves to its true value.

it is more likely to experience grasp failures when executing three-fingered grasp

controllers compared to two-fingered controllers.

Because schema structured learning is more likely to experience a greater num-

ber of successful two-fingered grasps than three-fingered grasps at the beginning of

learning, the algorithm is more likely to discover the value of the two-fingered grasp

strategy before the three-fingered grasp strategy. This is supported by the results

shown in Figure 8.3. Figure 8.3 compares the maximum estimated probability of suc-

cess for a two-fingered reach-grasp policy instantiation (the solid line) with that for

a three-fingered reach-grasp policy instantiation (the dotted line). Note that this is

not the actual rate of reach-grasp success, but instead what the algorithm estimates

the success rate would be if the best reach-grasp policy instantiation for a two- or

three-fingered grasp were selected. These results are averaged over three experiments

where Dexter attempted to grasp the vertical towel roll in a series of 25 reach-grasp

trials. Schema structured learning used greedy action selection while learning the cor-

180

rect instantiations of the localize-reach-grasp action schema. Dexter was free

to grasp using two or three fingers on the right hand.

These results show that unrealisticly high estimates of success (at trial 1) are

quickly replaced by more realistic expectations (by trial 5). This reflects the robot’s

initial experience of executing random reach-grasp instantiations that result in poor

grasps. The higher probability of grasp failure when schema structured learning

selects a random three-fingered reach-grasp policy is reflected by the fact that two-

fingered performance (the solid line) remains above three fingered performance (the

dotted line) in the first ten trials. By the 10th trial, schema structured learning

has discovered that good two-fingered reach-grasp instantiations do exist and the

estimate of success for a two-fingered policy (the solid line) has returned to a relatively

high level. However, notice that the estimated value of the three-fingered reach-

grasp instantiations never improves. This is because, after the first few random

trials, schema structured learning consistently selects two-fingered reach-grasp policy

instantiations without exploring three-fingered grasps. As a result, the robot never

learns that it is possible to grasp the cylinder using a three-fingered grasp if it reaches

to the top of the cylinder.

8.3 Curiosity-Based Exploration

The goal of curiosity-based exploration is to enable schema structured learning

to discover all good instantiations of the action schema, even after a few good solu-

tions have been found. One way of accomplishing this is to explore randomly, i.e., to

draw actions randomly from a uniform distribution over all possible actions. How-

ever, random exploration can lead to slow learning because it will explore bad policy

instantiations just as frequently as good ones. This chapter proposes curiosity-based

exploration and hypothesizes that it enables schema structured learning to learn faster

181

than random exploration without suffering from the problems associated with greedy

action selection.

Instead of selecting actions that maximize the estimated probability of success,

curiosity-based exploration selects the action that maximizes the improvement in the

expected probability of success. Specifically, curiosity-based exploration evaluates

how much the estimated probability of success of each potential action has improved

in the last k trials. The action with the largest improvement in estimated success is

selected. Recall from Section 6.4 that P ∗(a|st, c) is the value of taking action a from

state st with context c, given the current transition model. Let P ∗
k (a|st, c) be the

same quantity calculated as a function of the transition model k trials ago. Then,

the exploration value of taking a is:

Ek(st, a) = P ∗(a|st, c)− P ∗
k (a|st, c). (8.1)

The exploration value describes how much the estimated probability of success has

changed in the last k trials.

We use the term “curiosity-based exploration” because this exploration value cap-

tures a notion of how “interesting” an action is to the system. When an action is first

discovered to satisfy action schema transition constraints, that action is considered

to be “interesting” to the system and the system prefers that action in the future.

However, the action only remains “interesting” as long as its estimated value con-

tinues to improve. As the estimated value of the action approaches the true value,

the system could be considered to become “bored” with the action and will cease to

prefer it. Notice that this approach does not select actions based only on whether

the action improves the transition model. For actions to be “interesting,” they must

have an unexpectedly high value.

182

0 5 10 15 20 25 30 35 40 45
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Episode

M
ax

im
u

m
 P

ro
b

ab
ili

ty

(a)

0 5 10 15 20 25 30 35 40 45
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Episode

M
ax

im
u

m
 P

ro
b

ab
ili

ty

(b)

Figure 8.4. Comparison of schema structured learning performance (the estimated
maximum probability of success) when curiosity-based exploration is used (the solid
line) and random exploration is used (the dotted line.) The error bars show one stan-
dard deviation above and below the mean. Random exploration sampled actions from
a uniform distribution over all feasible actions. (a) compares these exploration strate-
gies in terms of the maximum value of a two-fingered reach-grasp policy. (b) compares
exploration strategies in terms of the maximum value of a three-fingered reach-grasp
policy. Notice that schema structured learning learns faster when curiosity-based
exploration is used.

8.4 Experiments

Experiments were performed that characterize the performance of using schema

structured learning with curiosity exploration. These experiments tested the hypoth-

esis that schema structured learning with curiosity exploration outperforms schema

structured learning using either greedy exploration or random exploration. A series

of six experiments were conducted using the localize-reach-grasp action schema in

the context of grasping the vertical towel roll. Each experiment consisted of a series

of 42 trials in which the system executed an instantiation of the localize-reach-grasp

action schema. The system was constrained to use only the right hand, but was

allowed to use either a two- or three-fingered grasp. The solid line in Figure 8.4(a)

shows the estimated maximum probability of success for a two-fingered reach-grasp

183

policy instantiation as a function of trial number. This is the estimated probability

of success based on the robot’s experiences up to that trial number. This line is an

average of the results from six experiments. The solid line in Figure 8.4(b) shows

the same estimated maximum probability of success for three-fingered reach-grasp

policies, averaged over six experiments. Note that both figures report data from the

same six experiments; although they are plotted separately, the values of the two-

and three-fingered grasps are improving simultaneously. In both figures, the error

bars are one standard deviation above and below the mean.

These results were compared against the performance of schema structured learn-

ing when random exploration was used. A parallel series of six experiments was

conducted that test the performance of schema structured learning when actions

were randomly selected from a uniform distribution over all feasible actions. In these

experiments, the system learned by executing random instantiations of the localize-

reach-grasp action schema. The dotted lines in Figures 8.4(a) and 8.4(b) illustrate

the results. The dotted lines show the estimated maximum probability of a successful

transition as a function of trial number for policy instantiations involving two- and

three-fingered grasps. As with curiosity-based exploration, the robot’s estimate of the

maximum probability of success improves as the robot experiences things randomly.

However, notice that the performance of schema structured learning using random

exploration lags that of schema structured learning when curiosity exploration is used.

In particular, notice that in Figure 8.4(a), schema structured learning using curios-

ity exploration significantly outperformed schema structured learning with random

exploration between trials 5 and 15. In Figure 8.4(b), schema structured learning

using curiosity exploration outperformed learning with random exploration between

trials 20 and 40. These results indicate that curiosity-based exploration can enable

the schema structured learning algorithm to learn faster than it does with random

exploration.

184

8.5 Summary

This chapter proposed curiosity-based exploration, a new exploration strategy to

be used with the schema structured learning algorithm. Curiosity-based exploration

solves a problem encountered in schema structured learning associated with greedy

action selection. If schema structured learning always selects actions that (greedily)

maximize the probability of a successful trajectory, then it will fail to discover new

solutions once a good policy instantiation is found. This is demonstrated in a set of

experiments that show that when schema structured learning uses greedy exploration,

it begins to select two-fingered reach-grasp policies exclusively because of a few initial

failures using three-fingered reach-grasp policies. Curiosity-based exploration solves

this problem by only selecting actions with an improving estimated value, i.e. an

improving estimated probability of success. Once the estimated value of the action

stops changing, the action is assumed to be well-modeled and the robot considers

it less “interesting.” This chapter reports on a series of experiments that compare

the performance of schema structured learning using curiosity-based exploration and

random exploration. The results show that, compared to random exploration, the

robot learns faster when curiosity-based exploration is used. Also, in contrast to

greedy exploration, curiosity-based exploration should eventually discover all viable

solutions.

185

CHAPTER 9

CONCLUSION

In robotics, force domain problems are frequently understood to be mechanics

problems where the robot must sense, understand, and ultimately act upon an exter-

nal physical world. This perspective often leads to an approach where a force domain

problem is analyzed and the laws of Newtonian physics are applied to calculate a

geometrical description of a solution. The resulting solution must be carried out by

a robot with carefully calibrated position control. Drawbacks of this approach are

that: (1) integrating multi-modal sensory information to determine a geometrical un-

derstanding of the problem can be difficult, (2) solving the geometrically represented

problem can be computationally complex, and (3) implementing a geometric solution

requires precise position control that can be difficult to achieve.

In contrast, this thesis takes a control-based approach where the problem is recast

in terms of finding a sequence or combination of controllers that reliably leads to a

goal configuration. The complexity of the resulting controller sequencing problem is

determined by how well structured the underlying “language” of controllers is. This

thesis uses the control basis framework to construct a well-structured set of controllers

that combine force, position, and grasp objectives in flexible ways. These controllers

are shown to reliably lead the robot to good grasp configurations from limited domains

of attrition. In addition to grasping, a case study demonstrates that these controllers

can be successfully applied to statically stable dexterous manipulation problems.

Since many of the closed-loop controllers proposed in this thesis only converge to

good solutions from limited domains of attraction, it is necessary to sequence and

186

combine controllers in such a way that end-to-end task objectives are reliably re-

alized. This problem can be solved by learning from experience which sequences of

controllers can be expected to reach the task objective. Since it can be time consuming

to consider arbitrary sequences of controllers, this thesis proposes schema structured

learning, an algorithm that limits consideration to variants of a generalized solution.

This algorithm utilizes a key characteristic of the control basis: that similarly func-

tioning controllers have similar representations. A new framework, known as the

action schema, associates groups of similarly functioning controllers with abstract

actions. These abstract actions are used to define a generalized solution. Schema

structured learning searches for instantiations of the generalized solution that real-

ize task objectives. This approach is applied to the grasp synthesis problem where

schema structured learning discovers which instantiations of a generalized localize-

reach-grasp action schema can be expected to realize successful grasps for different

objects in different poses. Because grasp context is encoded in terms of coarse visual

features such as the position and principle axes of the foreground object, learned

grasp strategies generalize well to new objects.

This thesis makes the following key contributions:

1. A composite grasp controller is proposed that executes Coelho’s moment resid-

ual controller in the null space of the force residual controller. The resulting

controller is faster and more robust than executing the component controllers

separately.

2. The composite grasp controller is combined with a hybrid force-position con-

troller to create a sliding grasp controller that maintains light contact with the

object while displacing contacts toward good grasp configurations. This ap-

proach allows much more tactile data to be collected than would otherwise be

possible.

187

3. The range of grasps that can be generated is expanded by allowing grasp con-

trollers to be parameterized by composite contacts, called virtual contacts,

based on Iberall’s virtual fingers.

4. The convergence characteristics of the sliding grasp controller are experimen-

tally characterized on three everyday objects. The results show that grasp

controllers can effectively synthesize quality grasps from a range of starting

configurations.

5. An approach to statically-stable dexterous manipulation based on grasp con-

trollers is proposed. By executing in the null space of wrench closure condi-

tions, safe transitions between statically-stable grasps is assured. The approach

is demonstrated in a case study involving bi-manual manipulation.

6. A new learning algorithm, schema structured learning, is proposed that discov-

ers how to apply a generalized solution to particular problem contexts. This

algorithm takes advantage of a characteristic of control-based representations

in which functionally similar solutions can have similar representations.

7. Schema structured learning is applied to the grasp synthesis problem. Through

a process of trial and error, Dexter, the UMass bimanual humanoid, discovers

how to grasp different objects as a function of the centroid and principle axes

of a foreground blob in a visual image. Grasp strategies are shown to generalize

well to objects that the robot has never experienced before.

8. A new curiosity-based exploration method is proposed that enables schema

learning to discover new solutions, even when good solutions have already been

discovered. In the case of grasp synthesis, this approach allows the robot to

learn more than one good reach-grasp strategy.

188

This thesis describes an accumulation of control knowledge that starts with robust

grasp control, extends it to dexterous manipulation, and ends with learned end-to-end

reach-grasp strategies. These contributions come together in the grocery bag experi-

ment described in Section 7.5. In these experiments, Dexter learns to reach and grasp

ordinary objects placed on a table in front of it. Instead of using geometric models

of the objects, Dexter learns to grasp different objects presented in different poses by

considering only a few coarse features that are easily determined by a vision system.

Based on the visual information, the robot decides upon a qualitative reach-grasp

strategy that is executed by robust closed-loop controllers. These controllers refine

the approximate grasp solution by making fine adjustments in contact configuration

based on tactile feedback. This is a practical approach to grasp synthesis because the

underlying grasp controllers are robust to unexpected object pose or shape. Moreover,

the generalization of reach-grasp skills to new objects suggests that this approach can

learn grasp competency for large classes of objects and object poses.

9.1 Directions For Future Work

This thesis raises a number of important questions. Foremost among these is

whether it is possible to describe all statically-stable force domain behavior using

the same control-based primitives. This thesis proposes that statically-stable dex-

terous manipulation can be described in terms of a single set of control-based grasp

primitives.

However, can the same set of primitives also describe pushing and assembly? Do

a set of control-based primitives exist that push an object when arranged one way

and grasp an object when arranged another? Can the same set of primitives describe

force-based insertion operations? As in grasping, both pushing and insertion require

the robot to make contact in positions that allow the desired forces to be applied.

Although both operations require some kind of geometric reasoning, force-feedback is

189

also indispensable. This “unified framework” could give a robot a common reference

frame by which to evaluate different manipulation strategies.

Short of discovering a new “unified framework,” there are a number of possible

extensions of the grasp control work. Following Coelho, the grasp controller pre-

sented in this thesis makes assumptions regarding the local curvature of the object

surface. The force residual controller assumes that the object is spherical and the

moment residual controller assumes the object is flat. However, it may be possible

to determine local curvature directly from a windowed history of contact positions

or from a composite virtual contact. Information regarding whether the object sur-

face is convex, concave, or flat could potentially be used to improve grasp controller

performance.

Another addition to grasp control that might prove useful involves rolling contacts.

This thesis explores sliding as an alternative method of displacing contacts. However,

rolling the finger in order to displace the contact point on the object presents another

interesting alternative. Displacing contacts through sliding or probing assumes that a

good grasp already exists or that the object is lying on a table. In contrast, a rolling

strategy can be used to improve a grasp while continuing to use that grasp to hold

the object. Humans frequently take this approach to improve or adjust a grasp that

already exists. By displacing contacts by rolling the fingers, the grasp controller can

improve a grasp that had shifted when the object was lifted or can improve what was

initially a poor grasp.

The schema structured learning approach also suggests some interesting possi-

bilities. In particular, perhaps schema structured learning could be used to create

new perceptual distinctions based on the general behavior represented by an action

schema. Schema structured learning makes distinctions in the state-action space re-

garding how to apply the generalized policy. This knowledge is used to improve the

robot’s expected future performance on that task. However, perhaps these distinc-

190

tions would be useful in other tasks as well. The distinction that schema structured

learning discovers with regard to a particular behavior could be encoded as a new

binary feature. If the feature is used to augment the representation used in a new

learning problem, then it could accelerate learning. This approach would only be

useful in situations where structural similarities existed among multiple tasks. For

example, consider the role of object location in a grasping task and a place task.

Suppose that the distinction between left-hand-reachable and right-hand-reachable

locations is discovered by schema structured learning in the context of a grasping

task. This distinction would also be useful in a place task where the system needed

to learn how far the robot could reach. Thus by using the distinction learned in the

grasping task, the robot could accelerate learning in the place task.

Another extension of the schema structured learning approach would create equiv-

alence classes of temporally extended actions. A temporally extended action is a

multi-time-step sequence of actions or action policy. In this approach, each abstract

action in the action schema would be instantiated by a temporally extended action.

This would allow the designer to create equivalence classes by designing the right set

of temporally extended actions, even when equivalence classes did not exist in the

underlying action representation.

191

APPENDIX A

SUMMARY OF CONTROLLER NOTATION

This thesis defines an increasingly complex body of controllers and sensor trans-

forms. The controllers used in each successive chapter build on controllers previously

defined. This chapter lists and briefly describes the main controllers and transforms

used in this thesis in the order that they were introduced.

Controller/Transform Name

φp|σp(Γm)
τp(Γm) (xref) Position controller

φr|σr(Γm)
τr(Γm) (rref) Orientation controller

φf |σf (Γm)

τf (Γm) (fref) Force controller

φm|σm(Γm)
τm(Γm) (fref) Moment controller

φk|σk(Γm)
τk(Γm) Posture optimization controller

Table A.1. Controllers and transforms introduced in Chapter 3.

192

Controller/Transform Name

φfr|σfr(Γσ)

τfr(Γτ) Force residual controller

φmr|σmr(Γσ)
τmr(Γτ) Moment residual controller

πg|Γσ
Γτ
≡ φmr|σmr(Γσ)

τmr(Γτ) / φfr|σfr(Γσ)

τfr(Γτ) Grasp controller

(object surface coordinates)

σn(Γm) Unit surface normal sensor transform

πs|Γm
Γm

(xref) ≡ Sliding controller

φp|σp(Γm)
τp(Γm) (xref) / φf |σf (Γm)

τf (Γm) (κfσn(Γm))

πsq|Γm,Γσ

Γm,Γτ
(xref) ≡ Sliding with posture optimization

φp|σp(Γm)
τp(Γm) (xref) / φk|σk(Γσ)

τk(Γτ) / φf |σf (Γm)

τf (Γm) (κfσn(Γm))

πgx|Γσ
Γτ

= φmr|σmr(Γσ)
τmrx (Γτ) / φfr|σfr(Γσ)

τfrx (Γτ) Grasp controller (Cartesian space)

πsgx|Γσ
Γτ
≡ πs|Γτ

Γτ

(
πgx|Γσ

Γτ

)
Sliding grasp controller

πgθ|Γσ
Γτ
≡ φmr|σmr(Γσ)

τmrr (Γτ) / φfr|σfr(Γσ)

τfrr (Γτ) Grasp controller (orientation space)

πrgθ|Γσ
Γτ
≡ φr|σr(Γτ)

τr(Γτ)

(
πgθ|Γσ

Γτ

)
Rotation grasp controller

Table A.2. Controllers and transforms introduced in Chapter 4.

Controller/Transform Name

σc(Γm) Grasp force reference

πgf |Γm
Γm
≡ φf |σf (Γm)

τgf (Γm) (σc(Γm)) Grasp force controller

πtrans|Γm
Γm
≡ φp|σp(Γm)

τp(Γm) (xref) / πgf |Γm
Γm

Transport controller

πgm|Γm
Γm

(xref) ≡ “Guarded move” controller

φp|σp(Γm)
τp(Γm) (xref) / φf |σf (Γm)

τf (Γm) (κgmσ̂f (Γm))

πsp|Γσ
Γτ

(fref) ≡ πs|Γτ
Γτ

(
φfr|σfr(Γσ)

τfr(Γτ) (fref)
)

“Slide to horizontal” controller

Table A.3. Controllers and transforms introduced in Chapter 5.

193

Controller/Transform Name

σcent2(γimage) Blob centroid sensor transform

(image plane)

πt|γpt
γpt

(γimage) ≡ φp|σp(γpt)
τp(γpt)

(σcent2(γimage)) Visual tracking controller

σcent3(γl, γr) Blob centroid sensor transform

σmaj3(γl, γr) ≡ Blob major axis sensor

σtri(σcent2(γl)± σmaj2(γl), σcent2(γr)± σmaj2(γr)) transform

σmin3(γl, γr) ≡ Blob minor axis sensor

σtri(σcent2(γl)± σmin2(γl), σcent2(γr)± σmin2(γr)) transform

σecc(γl, γr) ≡ ‖σmaj3(γl,γr)‖
‖σmin3(γl,γr)‖ Blob eccentricity sensor

transform

σφ(γl, γr) ≡ tan−1

(
z√

x2+y2

)
Blob elevation angle

sensor transform

σlen(γl, γr) ≡ 2‖σmaj3(γl, γr)‖ Blob major axis length

sensor transform

πpmaj|γa
γa

(κp) ≡ φp|σp(γa)
τp(γa) (σcent3(γl, γr)± κpσmaj3(γl, γr)) Reach-to-position controller

πrmaj2|{γ1,γ2}
{γ1,γ2}(θ) ≡ φp|σp({γ1,γ2})

τp({γ1,γ2}) Reach-to-orientation controller

({line(σp(γ12), n̂)|n̂ ∈ cone(σ̂maj3(γl, γr), θ)}) (two-contacts)

πrmaj3|{γ1,γ2,γ3}
{γ1,γ2,γ3}(θ) ≡ φp|σp({γ1,γ2,γ3})

τp({γ1,γ2,γ3}) Reach-to-orientation controller

({plane(σp(γ123), n̂)|n̂ ∈ cone(σ̂maj3(γl, γr), θ)}) (three-contacts)

Table A.4. Controllers and transforms introduced in Chapter 7.

194

APPENDIX B

OBJECTS USED IN GROCERY BAG EXPERIMENTS

Figures B.1, B.2, B.3, and B.4 illustrate the 25 grocery items used in the grocery

bag experiments. When a good picture of the object is available, it is shown in

the “Object” column. The second column, “View From Camera,” shows the object

as it is seen from one of the cameras in the stereoscopic head. The third column,

“Segmented Blob,” illustrates the corresponding blob after background subtraction.

The last column, “Info,” lists the object name, the ellipsoid parameters that describe

the segmented blob, and the object mass. Although these figures show only the image

from the left camera, the ellipsoid parameters are calculated using both the left and

right stereoscopic images. First, covariance matrices for the blobs in both image

frames are calculated. Then, the eigenvalues and eigenvectors are calculated for each

matrix. Based on the Eigen analysis, three-dimensional major and minor axes for the

object are calculated. This is summarized in the “Info” column in terms of the angle

of the major axis, the ratio of major axis length to minor axis length, and the length

of the major axis.

195

Object View From Segmented Info
Head Blob

phi = 1.57 rad
l/w = 3.9
length = 10.3 cm
mass = 484 g

phi = 0 rad
l/w = 2.2
length = 9.3 cm
mass = 280 g

phi = 1.57 rad
l/w = 2.57
length = 7 cm
mass = 448 g

phi = 1.57 rad
l/w = 3.3
length = 11.8 cm
mass = 327 g

phi = 1.57 rad
l/w = 2.4
length = 10.4 cm
mass = 566 g

phi = 1.57 rad
l/w = 3.46
length = 12.4 cm
mass = 215 g

phi = 1.57 rad
l/w = 2.2
length = 7.8 cm
mass = 395 g

phi = 0 rad
l/w = 1.5
length = 7.6 cm
mass = 310 g

Figure B.1. Objects 1 - 8.

196

Object View From Segmented Info
Head Blob

phi = 1.57 rad
l/w = 1.86
length = 7 cm
mass = 548 g

phi = 1.57 rad
l/w = 4.1
length = 12.6 cm
mass = 408 g

phi = 1.57 rad
l/w = 2.6
length = 7.4 cm
mass = ¿610 g

phi = 0 rad
l/w = 2
length = 8.3 cm
mass = 465 g

phi = 1.57 rad
l/w = 2.9
length = 11.5 cm
mass = 249 g

phi = 1.57 rad
l/w = 2.5
length = 8.3 cm
mass = 225 g

phi = 1.57 rad
l/w = 1.77
length = 6 cm
mass = 295 g

phi = 1.57 rad
l/w = 3.1
length = 8.6 cm
mass = 215 g

Figure B.2. Objects 9 - 16.

197

Object View From Segmented Info
Head Blob

phi = 1.57 rad
l/w = 3.3
length = 10.7 cm
mass = 411 g

phi = 1.57 rad
l/w = 1.58
length = 5 cm
mass = 400 g

phi = 1.57 rad
l/w = 1.33
length = 4.5 cm
mass = 185 g

phi = 1.57 rad
l/w = 1.3
length = 8.6 cm
mass = 117 g

phi = 1.57 rad
l/w = 3.57
length = 12.2 cm
mass = 545 g

phi = 1.57 rad
l/w = 2.95
length = 10.3 cm
mass = 368 g

phi = 1.57 rad
l/w = 1.4
length = 6 cm
mass = 217 g

phi = 1.57 rad
l/w = 1.8
length = 5 cm
mass = 238 g

Figure B.3. Objects 17 - 24.

198

Object View From Segmented Info
Head Blob

phi = 1.57 rad
l/w = 2.3
length = 7.3 cm
mass = 237 g

Figure B.4. Object 25.

199

APPENDIX C

DESCRIPTION OF ROBOT PLATFORM

Figure C.1. Dexter, the UMass bimanual humanoid.

The experiments that contribute to this thesis were performed on Dexter, the

UMass bimanual humanoid shown in Figure C.1. Dexter consists of a stereo Bisight

head, two Barrett arms, and two Barrett hands [14, 56]. The head consists of two

cameras mounted on a pan and tilt unit. In addition to pan and tilt, the cameras

have independent vergence. Each of the arms is a Whole Arm Manipulator (WAM)

that is notable for its direct drive, back-drivable joints. These joints are driven by

high-torque motors that are directly coupled to the arm mechanical output by cables.

200

The WAMs that comprise Dexter have seven joints each: three co-linear joints in the

shoulder, three co-linear joints in the wrist, and one in the elbow.

Figure C.2. Dexter’s two Barrett hands are equipped with fingertip load cells.

Figure C.2 illustrates the three-fingered Barrett hand that is mounted at the end

of each arm. Each finger has two phalanges. The two phalanges in each finger

are mechanically coupled (using a clutch mechanism that allows the distal joint to

continue to close if the proximal phalange is obstructed) and driven by a single motor.

In addition to the three degrees of freedom (DOFs) associated with the three fingers,

the Barrett hand has an extra DOF that actuates the “spread” between two of the

fingers.

Notice the fingertips illustrated in Figure C.2. Each fingertip is a hemispherical

cap attached to the end of a cylinder and mounted on an ATI nano-17 six-axis load

cell. This arrangement allows the fingertips to sense forces when they make contact

with the environment. The ATI load cells were found to be very robust without com-

promising sensitivity to most of the contact loads experienced during grasping. In

addition to recovering contact forces, one of the key features of this sensor arrange-

201

ment is the ability to reconstruct fingertip contact location using the load cell. If it

is assumed that the wrench sensed by the load cell is the result of a load applied at

a single point of contact on the fingertip, then it is possible, based on the fingertip

geometry, to calculate the location of a unique contact point. When compared with

other approaches for determining contact location based on sensate “skins,” this ap-

proach is attractive because contact location sensing can be precise without sacrificing

robustness.

202

BIBLIOGRAPHY

[1] Allen, P., Miller, A., Oh, P., and Leibowitz, B. Integration of vision, force, and
tactile sensing for grasping. Int’l Journal of Intelligent Mechatronics 4, 1 (1999),
129–149.

[2] Arbib, M. A. Schema theory. In Encyclopedia of Artificial Intelligence (2nd
Edition). Wiley-Interscience, 1992.

[3] Arbib, M. A., Iberall, T., and Lyons, D. Coordinated control program for move-
ments of the hand. Exp. Brain Research (1985), 111–129.

[4] Arkin, R. Behavior-Based Robotics. MIT Press, 1998.

[5] Atkeson, Chris, Moore, Andrew, and Schaal, Stefan. Locally weighted learning.
AI Review 11 (April 1997), 11–73.

[6] Atkeson, Chris, Moore, Andrew, and Schaal, Stefan. Locally weighted learning
for control. AI Review 11 (April 1997), 75–113.

[7] Bellman, R. E. Dynamic Programming. Princeton University Press, Princeton,
1957.

[8] Bicchi, A. On the closure properties of robotic grasping. Int. J. of Robotics
Research 14, 4 (1995).

[9] Bicchi, A., Salisbury, J., and Brock, D. Contact sensing from force measurements.
International Journal of Robotics Research 12, 3 (1993).

[10] Brooks, R. A robust layered control system for a mobile robot. IEEE Journal
of Robotics and Automation 2, 1 (March 1986), 14–23.

[11] Burridge, R., Rizzi, A., and Koditschek, D. Sequential composition of dynami-
cally dexterous robot behaviors. International Journal of Robotics Research 18,
6 (1999).

[12] Coelho, J. Multifingered Grasping: Grasp Reflexes and Control Context. PhD
thesis, University of Massachusetts, 2001.

[13] Coelho, J., and Grupen, R. A control basis for learning multifingered grasps.
Journal of Robotic Systems (1997).

203

[14] Coelho, J, Piater, J., and Grupen, R. Developing haptic and visual perceptual
categories for reaching and grasping with a humanoid robot. Robotics and Au-
tonomous Systems Journal, special issue on Humanoid Robots 37, 2-3 (November
2001).

[15] Connolly, C., and Grupen, R. Nonholonomic path planning using harmonic
functions. Tech. rep., University of Massachusetts, 1994.

[16] Cutkosky, M., and Howe, R. Dextrous robot hands. NY: Springer-Verlag, 1990,
ch. Human grasp choice and robotic grasp analysis, pp. 5–31.

[17] Cutkosky, M., and Wright, P. Modeling manufacturing grips and correlations
with the design of robotic hands. In IEEE Int’l Conf. Robotics Automation
(April 1986), vol. 3, pp. 1533–1539.

[18] Dean, T., and Givan, R. Model minimization in markov decision processes. In
AAAI (1997), pp. 106–111.

[19] Dearden, R., Frieman, N., and Andre, D. Model based bayesian exploration.
In Proceedings of Fifteenth Conference on Uncertainty in Artificial Intelligence
(1999).

[20] Drescher, G. Made-Up Minds: A Constructivist Approach to Artificial Intelli-
gence. MIT Press, 1991.

[21] Farooqi, M., Tanaka, T., Ikezawa, Y., and Omata, T. Sensor based control for
the execution of regrasping primitives on a multifingered robot hand. In IEEE
Int’l Conf. Robotics Automation (May 1999).

[22] Faverjon, B., and Ponce, J. On computing two-finger force-closure grasps of
curved 2d objects. In IEEE Int’l Conf. Robotics Automation (1991).

[23] Fearing, R.S. Simplified grasping and manipulation with dextrous robot hands.
IEEE Journal of Robotics and Automation 2, 4 (December 1986).

[24] Ferrari, C., and Canny, J. Planning optimal grasps. In IEEE Int’l Conf. Robotics
Automation (May 1992).

[25] Fuentes, O., and Nelson, R. Learning dextrous manipulation skills for multifin-
gered robot hands using the evolution strategy. Machine Learning (1998).

[26] Grupen, Roderic. Grasping and Manipulation with Multifingered Robot Hands.
PhD thesis, University of Utah, 1988.

[27] Han, L., and Trinkle, J. Dextrous manipulation by rolling and finger gaiting. In
IEEE Int’l Conf. Robotics Automation (May 1998), vol. 1, pp. 730 – 735.

[28] Hong, J., Lafferriere, G., Mishra, B., and Tan, X. Fine manipulation with mul-
tifinger hands. In IEEE Int’l Conf. Robotics Automation (1990), pp. 1568–1573.

204

[29] Huber, M. A Hybrid Architecture for Adaptive Robot Control. PhD thesis, U.
Massachusetts, 2000.

[30] Huber, M., and Grupen, R. Learning to coordinate controllers - reinforcement
learning on a control basis. In Proc. of the Fifteenth Int’l Joint Conference on
Artificial Intelligence (1997), pp. 1366–1371.

[31] Iberall, T. The nature of human prehension: Three dextrous hands in one. In
IEEE Int’l Conf. Robotics Automation (April 1987), pp. 396–401.

[32] Ijspeert, J. A., Nakanishi, J., and Schaal, S. Movement imitation with nonlinear
dynamical systems in humanoid robots. In IEEE Int’l Conf. Robotics Automation
(2002).

[33] Jameson, J., and Leifer, L. Automatic grasping: An optimization approach.
IEEE Transactions on Systems, Man, and Cybernetics smc-17, 5 (September
1987), 806–813.

[34] Kaplan, F., and Oudeyer, P. Maximizing learning process: an internal reward
system for development. Springer-Verlag, 2004, pp. 259–270.

[35] Karuppiah, D., Zhu, Z., Shenoy, P., and Riseman, E. A fault-tolerant distributed
vision system architecture for object tracking in a smart room. In International
Workshop on Computer Vision Systems (July 2001).

[36] Kerr, J., and Roth, B. Analysis of multifingered hands. Int. Journal of Robotics
Research 4, 4 (1986), 3–17.

[37] Kingdon, J. Lowly Origin. Princeton University Press, 2003.

[38] Kirkpatrick, D., Mishra, B., and Yap, C. Quantitative steinitz’s theorems with
applications to multifingered grasping. In 20th ACM Symp. on Theory of Com-
puting (May 1990), pp. 341–351.

[39] Li, Z., and Sastry, S. Task-oriented optimal grasping by multifingered robot
hands. In IEEE Int’l Conf. Robotics Automation (March 1987), vol. 4, pp. 389–
394.

[40] MacKenzie, C., and Iberall, T. The Grasping Hand. North-Holland, 1994.

[41] Maes, P., and Brooks, R. Learning to coordinate behaviors. In AAAI (August
1990), pp. 796–802.

[42] Mahadevan, S., and Connell, J. Automatic programming of behavior-based
robots using reinforcement learning. Artificial Intelligence 55, 2-3 (June 1992),
311–365.

[43] Martin, T. B., Ambrose, R. O., Diftler, M. A., Jr., R. Platt, and Butzer, M. J.
Tactile gloves for autonomous grasping with the nasa/darpa robonaut. In IEEE
Conference on Robotics and Automation (April 2004).

205

[44] Marzke, M. Evolution. Amsterdam: Elsevier Science B.V., 1994, ch. 2.

[45] Mason, M., and Salisbury, J. Robot hands and the mechanics of manipulation.
MIT Press, 1985.

[46] Michelman, P., and Allen, P. Forming complex dextrous manipulations from
task primitives. In IEEE Int’l Conf. Robotics Automation (1994).

[47] Mirtich, B., and Canny, J. Easily computable optimum grasps in 2-d and 3-d.
In IEEE Int’l Conf. Robotics Automation (1994), pp. 739–747.

[48] Moore, Andrew. Knowledge of knowledge and intelligent experimentation for
learning control. In Proceedings of the 1991 Seattle International Joint Confer-
ence on Neural Networks (July 1991).

[49] Murray, R., Li, Z., and Sastry, S. A Mathematical Introduction to Robotic Ma-
nipulation. CRC Press, 1994.

[50] Nakamura, Y. Advanced Robotics Redundancy and Optimization. Addison-
Wesley, 1991.

[51] Napier, J. The prehensile movements of the human hand. Journal Bone Joint
Surgery 38b, 4 (November 1956), 902–913.

[52] Nguyen, V. Constructing force-closure grasps. In IEEE Int’l Conf. Robotics
Automation (April 1986), vol. 3, pp. 1368–1373.

[53] Nguyen, V. Constructing stable grasps in 3d. In IEEE Int’l Conf. Robotics
Automation (March 1987), vol. 4, pp. 234–239.

[54] Nicolescu, M., and Mataric, M. A hierarchical architecture for behavior-based
robots. In Proc. of the First Int’l Joint Conf. on Autonomous Agents and Multi-
Agent Systems (July 2002), pp. 227–233.

[55] Piaget, J. The Origins of Intelligence in Children. Norton, NY, 1952.

[56] Platt, R., Brock, O., Fagg, A. H., Karupiah, D., Rosenstein, M., Coelho, J.,
Huber, M., Piater, J., Wheeler, D., and Grupen, R. A framework for humanoid
control and intelligence. In Proceedings of the 2003 IEEE International Confer-
ence on Humanoid Robots (October 2003).

[57] Platt, R., Fagg, A. H., and Grupen, R. Improving grasp skills using schema
structured learning. In Fifth Int’l Conf. on Development and Learning.

[58] Platt, R., Fagg, A. H., and Grupen, R. Extending fingertip grasping to whole
body grasping. In IEEE Int’l Conference on Robotics and Automation (2003).

[59] Platt, R., Fagg, A. H., and Grupen, R. Reusing schematic grasping policies. In
IEEE-RAS Int’l Conf. on Humanoid Robots (December 2005).

206

[60] Platt, R., Fagg, A. H., and Grupen, R. A. Nullspace composition of control laws
for grasping. In IEEE Int’l Conf. on Intelligent Robots and Systems (2002).

[61] Platt, R., Fagg, A. H., and Grupen, R. A. Manipulation gaits: Sequences of
grasp control tasks. In IEEE Int’l Conf. Robotics Automation (2004).

[62] Pollard, N. Synthesizing grasps from generalized prototypes. In IEEE Int’l Conf.
Robotics Automation (1996).

[63] Pollard, N. Closure and quality equivalence for efficient synthesis of grasps from
examples. International Journal of Robotics Research 23, 6 (June 2004), 595–614.

[64] Ponce, J., Sullivan, S., Sudsang, A., Boissonnat, J., and Merlet, J. On computing
four-finger equilibrium and force-closure grasps of polyhedral objects. Int. J. Rob.
Res. (1996).

[65] Popplestone, R., and Grupen, R. Symmetries in world geometry and adaptive
system behaviour. In 2nd International Workshop on Algebraic Frames for the
Perception-Action Cycle (September 2000).

[66] Puterman, M. L. Markov Decision Processes. John Wiley and Sons, New-York,
1994.

[67] Ravindran, B. An Algebraic Approach to Abstraction in Reinforcement Learning.
PhD thesis, University of Massachusetts, 2004.

[68] Ridley, M. The Red Queen: Sex and the Evolution of Human Nature. Penguin,
1993.

[69] Rosenstein, M., and Barto, A. Robot weightlifting by direct policy search. In
Proc. of the Seventeenth Int’l Joint Conference on Artificial Intelligence (2001),
vol. 2, pp. 839–844.

[70] Rus, D. In-hand dexterous manipulation of 3d piecewise-smooth objects. Inter-
national Journal of Robotics Research (1997).

[71] Schaal, S., and Atkeson, C. G. Memory-based robot learning. In IEEE Int’l
Conf. Robotics Automation (1994), pp. 2928–2933.

[72] Schlesinger, G. Ersatzglieder und Arbeitshilfen fur Kriegsbeschadigte und Unfal-
lverletzte. Berlin: Springer, 1919, ch. The mechanical structure of artificial limbs,
pp. 21–600.

[73] Schmidhuber, J. Curious model-building control systems. In Int. Joint Conf. on
Neural Networks (1991), vol. 2, pp. 1458–1463.

[74] Son, J., Howe, R., Wang, J., and Hager, G. Preliminary results on grasping
with vision and touch. In IEEE Int’l Conf. on Intelligent Robots and Systems
(November 1996), vol. 3.

207

[75] Son, J. S., Cutkosky, M. R., and Howe, R. D. Comparison of contact sensor
localization abilities during manipulation. In IEEE Int’l Conf. on Intelligent
Robots and Systems (August 1995), vol. 2, pp. 96–101.

[76] Sudsang, A., and Phoka, T. Regrasp planning for a 4-fingered hand manipulating
a polygon. In IEEE Int’l Conf. Robotics Automation (September 2003).

[77] Sudsang, A., and Ponce, J. New techniques for computing four-finger force-
closure grasps of polyhedral objects. In IEEE Int’l Conf. Robotics Automation
(May 1995), vol. 2, pp. 1355–1360.

[78] Sutton, R., and Barto, A. Reinforcement Learning, An Introduction. MIT Press,
1998.

[79] Tedrake, R., Zhang, R., and Seung, S. Learning to walk in 20 minutes. In Proc.
of the Fourteenth Yale Workshop on Adaptive and Learning Systems (2005).

[80] Teichmann, M., and Mishra, B. Reactive algorithms for 2 and 3 finger grasping.
In International Symposium on Intelligent Robotic Systems (July 1994).

[81] Teichmann, M., and Mishra, B. Reactive algorithms for grasping using a modified
parallel jaw gripper. In IEEE Int’l Conf. Robotics Automation (May 1994), vol. 3,
pp. 1931–1936.

[82] Trinkle, J., Ram, R., Farahat, A., and Stiller, P. Dexterous manipulation plan-
ning and execution of an enveloped slippery workpiece. In IEEE Int’l Conf.
Robotics Automation (May 1993), vol. 2, pp. 442–448.

[83] Ulam, P., and Balch, T. Niche selection for foraging tasks in multi-robot teams
using reinforcement learning. In Proc. of the 2nd Int’l Workshop on the Mathe-
matics and Algorithms of Social Insects (2003).

[84] Wilson, F. The Hand. Random House, NY, 1998.

[85] Yoshikawa, T. Analysis and control of robot manipulators with redundancy. In
Robotics Research, M. Brady and R. Paul, Eds. MIT Press, 1984, pp. 735–747.

[86] Yoshimi, B., and Allen, P. Integrating real-time vision and manipulation. In
Proc. of 13th Hawaii Int’l Conf. on System Sciences (January 1997), vol. 5,
pp. 178–187.

208

