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Abstract

In this paper we present the design of a decentralized
vision-based object search system that can be used for el-
der care in a smart environment. In our approach, each
autonomous search agent maintains separate estimates of
the probability density function (PDF) of the object location
and makes independent decisions about its search process.
Asynchronous cooperative search is achieved by transmit-
ting perceptual information among the agents. Our work
also investigates how context such as the detection history
and density of activity by people influence the estimation of
the prior PDF of the target and the use of this information
to improve the search efficiency. Our experimental results
demonstrate that the proposed cooperative search strategy
is efficient and the methods we use to incorporate contextual
information into the target’s posterior PDF can improve the
efficiency further.

1. Introduction
Health care for the elderly poses a major challenge as

the baby boomer generation ages. Part of the solution is
to develop technology using sensor networks and service
robotics to increase the length of time that an elder can re-
main at home. In addition to monitoring for illnesses and
potentially life-threatening situations, an equally important
challenge in in-home elderly care is providing assistance
in their day-to-day life. Since moderate immobility and
memory impairment are common as people age, a major
problem for the elderly is locating and retrieving frequently
used “common” objects such as keys, cellphone, books, etc.
Therefore, it is important to develop effective and efficient
approaches for automated in-home object search.

Heuristic strategies in target search. There has been
considerable recent interest in addressing the problem of
“target search”. Bourgault et al. [3] proposed a Bayesian
approach to the problem of target search by a single au-
tonomous sensor platform. Ye et al. [10] formulated target
search as an optimization problem where the goal is to max-

imize the probability of detecting the target within a given
time constraint. Since planning such search activity is NP-
complete, some heuristic strategies were proposed that of-
ten lead to practical solutions. Wixon et al. [9] use the idea
of indirect search, in which one first finds an object that
typically has a spatial relationship to the target, and then
restricts the search in the spatial area defined by that rela-
tionship. Sujan [8] proposes an iterative planning approach
driven by an evaluation function based on Shannon’s infor-
mation theory. The camera parameter space is explored and
each configuration is evaluated according to the evaluation
function. The concept of a visibility map is introduced in
[6, 7] to constrain the sensor parameter space according to
the detection characteristics of the recognition algorithm.
These techniques reduce the dimension of the sensor pa-
rameter space.

Cooperative search strategies. In search operations, a
team of intelligent agents can provide a robust solution with
greater efficiency than can be achieved by single agents,
even with comparatively superior mobility and sensors. The
key is to develop a cooperative decentralized control strat-
egy that allows each agent to determine its actions indepen-
dently while optimizing the team’s performance. A syn-
chronized coordinated search strategy was developed in a
Bayesian framework in [2]. DeLima et al. [4] proposed a
rule-based search method with which multiple unmanned
aerial vehicles can cooperatively search an area for mobile
target detection.

The approach proposed in this paper is related to both
the aspects of cooperative strategy and heuristic solution.
We use multiple Pan/Tilt/Zoom (PTZ) camera nodes as the
search agent to explore a specified area in a living space and
focus on developing an efficient cooperative search strat-
egy. In the design of our smart environment, the camera
nodes are supposed to perform multiple tasks such as ob-
ject search, people tracking, and are controlled by a re-
source management unit. In this framework, the search
process of an agent can be interrupted by other tasks with
higher priority. This problem, along with the possible node
and network failures, recommends a decentralized search



framework. This paper presents an asynchronous cooper-
ative search strategy in which autonomous search agents
share perceptual information, but maintain separate target
PDF estimates and make independent decisions about their
search strategy.

People interact with objects in the course of many tasks
associated with daily living. A novel idea in this paper is
leveraging user activity to improve the cost efficiency in
search tasks. User activity density can be analyzed from
the vision-based people tracker, and can be used to infer the
region where object use may happen. Activity density is
valuable information for increasing the accuracy and effi-
ciency of object search. To the best of our knowledge, no
work has been done that uses human activity information
to help reduce the search space of the robot agent. In this
paper we also investigate how to aggregate previous search
results to estimate the prior PDF of the target object.

The remainder of this paper is structured as follows. Sec-
tion 2 presents the local search using a single agent. Section
3 presents the cooperative search strategy. In Section 4 we
discuss the factors that influence the prior PDF of the target
and how to use it to expedite the search process. The exper-
imental results are presented in Section 5. Conclusions and
future work are given in Section 6.

2. Local Search with Single Agent
To achieve decentralized search, each search agent

should be able to independently perform a complete explo-
ration of the environment, acquire observations and decide
if the target is detected in a certain region.

2.1. Bayesian Searching Problem

The search problem for a single agent can be represented
in a Bayesian framework [3]. For a target r, the state vec-
tor of its location x⃗r ∈ Xr in Cartesian space can be ex-
pressed by a probability density function (PDF) pr(x⃗). A
prior PDF pr(x⃗0|z0) = pr(x⃗0) is the representation of the
prior knowledge of where the target object is before the
search. Given a prior PDF and the independent observations
z, the PDF of a target at time step t can be constructed re-
cursively using Bayes’ theorem. In the application of object
search to living space, it is reasonable to assume that when
the search process starts, the target object is stationary and
not allowed to move until the search finishes. So we have
pr(x⃗t|z1:t−1) = pr(x⃗t−1|z1:t−1). After each observation,
the PDF will be updated according to the observation,

pr(x⃗t|z1:t) = Kpr(x⃗t−1|z1:t−1) · pr(zt|x⃗t) (1)

Where K is the normalization factor and is given by,

K = 1/

∫
[pr(x⃗t|z1:t−1)pr(zt|x⃗t)]dx⃗t (2)

The search system is designed to maximize the chances
of finding the queried object in a restricted amount of time.
Although using a longer time horizon can achieve a bet-
ter solution, planning with a “one-step-lookahead” strategy
[3, 10] that maximizes the probability of detecting the tar-
get object at time t given the observation sequence z1...zt−1

can provide reasonable performance with very low compu-
tational overhead.

2.2. Local Search Strategy

The local search task consists of three subtasks. The first
subtask is the selection of the next action and the corre-
sponding PTZ parameters so as to bring a potential search
subarea into the field of view of the camera. The second
is to control the hardware to realize the planned state. The
third subtask involves detecting the target within the image.

We assume that the geometric configuration of the search
space is CW , and objects can be placed only on the floor or
on tables (with the same height). So the horizontal planes
of the search region are tessellated into a two-layer grid G
where the centers of the grid nodes gi ∈ G are candidate
positions to be observed.

Given CW , each agent c calculates a local visibility map
Mc(x⃗) = {0, 1} which indicates if a grid node gi is visible
to the camera or not (gi is located outside of the limitation of
the Pan/Tilt/Zoom parameters or is blocked by an occluding
object). Then the local PDF map pc,r(x⃗0) for agent r can
be initialized by re-normalizing pr(x⃗0) in all visible areas.

pc,r(x⃗0) = Npr(x⃗0) · Mc(x⃗) (3)

where N is a normalization factor. The local PDF map
is the core data maintained by each agent. After pc,r(x⃗0) is
calculated, the agent is ready to perform search. The overall
local search process is illustrated in Figure 2 (without mes-
sage transmission). The agent repeats the subtasks of action
planning, manipulation, and observation to explore all the
visible area.

In our approach each agent uses a “one-step-lookahead”
strategy to plan the next action. The action space of an agent
consists of all the manipulations that bring a visible grid
node to the center of the camera image. To do action plan-
ning, a value vi is calculated for each grid node indicating
the benefit of visiting this node. Given the local PDF of the
target, vi can be calculated by,

vi =
∑

gk∈Vi

pc,r(xk) (4)

where Vi is the set of all grid nodes in the observation
field, i.e., that can be observed when agent is visiting grid
node gi. As shown in Figure 1 (a), an observation field is
computed by projecting a bounding box in the camera im-
age to the Cartesian space. The bounding box is shortened



by approximately 50 pixels on each side to reduce lens cur-
vature effects. The action is selected to visit the grid node
with highest value vi.

In the manipulation step, the Pan/Tile/Zoom parameters
(α, θ, τ) = f(x⃗gi) are calculated according to the 3D posi-
tion of the selected grid node and the camera. To get similar
observation fields, the zoom value τ is proportional to the
distance between the visited grid node and the camera.
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Figure 1. Observation field of camera agents.

Object detection in the image is achieved using mean
shift with color features [1]. The targets can be commonly
used objects in the home such as keys, cellphones, cups and
books. If a potential object is detected in the image, the
camera will bring it to the center and zoom in further to
achieve a more accurate detection result. Therefore the time
cost of the observation step is variable, and an asynchronous
mechanism is necessary when we are designing the cooper-
ative search strategy. The observation result is integrated to
the local PDF using equation 1.

The search process terminates if the agent detects the tar-
get or completes the exploration of all its action space.

3. Cooperative Search Strategy
In this section we focus on how agents achieve coopera-

tive search through communication. Considering that local
search processes can be interrupted and can take different
amount of time per observation, a decentralized and asyn-
chronous cooperative search strategy is necessary for our
application.

Comparing to methods in which each agent maintains
identical PDFs [2], in the proposed search strategy, cooper-
ative agents maintain separate search knowledge concern-
ing the probable observability of the target and make inde-
pendent decisions about their search process. Based on the
local search process described in the previous section, co-
operative search can be achieved by transmitting messages.
There are two kinds of messages to be considered.

(1) Pre-Observation Inhibition Message (POIM). Since
the action sequence of the PTZ camera agent is discon-
tinuous, the problem of collision (overlapping observation)
avoidance is non-trivial. As illustrated in Figure 2, POIM is
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Figure 2. The cooperative search strategy for a single agent.

broadcast by an agent after it selects its next action, but be-
fore the control and observation steps are executed. POIM
contains an inhibition map I(x⃗) that masks all the grid
nodes to be 0 in the observation field of the selected next
action. The agent receiving a POIM will combine it with
its current local PDF to avoid overlapping observation. As
illustrated in Figure 3, in time t + 2, agent 2 receives the
POIM from agent 1. The area that agent 1 is planning to
observe is ablated in the local PDF of agent 2, which in turn
plans its next action to cover the peak on the right side.

(2) Observation Result Message (ORM). ORM is broad-
cast after an action is taken. It contains the observation re-
sult pr(zt|xt) produced by agent r at time t. The agent re-
ceiving this message uses it to update its current local PDF
using Bayes’ rule as shown in equation 1. The observation
result from another agent is considered to be equivalent to
the result obtained by the agent itself. As illustrated in Fig-
ure 3, the local PDF of target 1 at time t + 10 was modified
by the previous observation taken by itself, the observation
results sent by agent 2, and the POIM message sent by agent
2 at time t + 5.

Some techniques have to be applied to maintain the cor-
rectness of message transmission. First, message buffers are
used to store the received POIM and ORM. Second, some-
times ORMr

t arrives later than POIMr
t due to network la-

tency. The agent has to detect this inconsistency by compar-
ing the timestamp of the messages and discard ORMr

t . In
addition, the agent will discard the POIM if the correspond-
ing ORM hasn’t come for a time threshold TPOIM . There-
fore if the agent sending the POIM fails or is interrupted by
another task, the area masked by POIM will eventually be
observed by other agents.

The termination criterion of the cooperative search de-
pends on the requirement of the confidence of target detec-
tion. In our system as soon as two agents find the target, all
the agents will stop. The 3D location of the target is then
triangulated and reported.
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Figure 3. Local PDF update for search agents.

4. Factors That Influence the Prior PDF
Efficiency is crucial for each object search system. A

brute force search approach may suffice for the solution,
but will be computationally prohibitive for non-trivial situ-
ations. In the application of living space search, the prob-
abilistic distribution of objects can be influenced by many
factors. In this section we investigate the influence of two
salient factors, (i) the detection history that represents the
number of times that an object has been detected in a spe-
cific location, and (ii) the activity density of the people in
the environment.

4.1. Detection History

The aggregation of previous search and detection results
provides important cues to guide the search behavior. We
can use data accumulation over an extended period to pro-
duce a prior probabilistic distribution reflecting the target’s
preferred location in the environment. The influence of each
detection result depends on the triangulation quality of tar-
get detection.

After the target is detected, its location will be triangu-
lated by a camera pair. The influence of this detection on the
prior PDF is determined by the Cartesian observation error
ellipsoid, which can be estimated by the triangulation Jaco-
bian J . If D is the baseline between two cameras and θ1 and
θ2 are the respective headings to the target, the uncertainty
Jacobian is given as follows,

J =
D

sin2(γR − γL)

[
sin γR cos γR − sin γL cos γL

sin2(γR) − sin2(γL)

]
The eigenvalues and eigenvectors of JJT define the

principle directions of error amplification in stereo triangu-

lation. This ellipsoid in Cartesian space (as shown in Figure
4 (a)) can be interpreted as the error covariance in stereo lo-
calization and consequently, the spatially anisotropic uncer-
tainty of the stereo imaging geometry.

We use a kernel density estimation to model the detec-
tion history. The probability of observing target r at a grid
location x⃗ is given by

pd(x⃗|r) = Nd

Di∑
k=1

Kd(x⃗ − x⃗k) (5)

Where x⃗k are the locations where the target is detected,
Di is the total number of previous detections and Kd(·) is
a suitable kernel function (here, a Gaussian). The Gaussian
kernel Kd is scaled and rotated using the eigenvalues and
eigenvectors of JJT . Nd is the normalization factor. Fig-
ure 4 (b) shows an example of the accumulated detection
history where brighter areas have higher probability of con-
taining the object.
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Figure 4. Detection history. (a) Localization uncertainty for cam-
era pairs . (b) Accumulated detection history.

4.2. Activity density from people tracking

People interact with objects in the course of many tasks
associated with daily living. The aggregation of commonly
observed tracking trajectories representing daily activities
of the human subject provides a wealth of associated infor-
mation about the possible locations of the objects related to
these activities. To model activity density, a robust person
tracking module using the PTZ camera network has been
developed and used in our system. The same camera nodes
used in object search are also used as tracking agents. Each
PTZ camera performs tracking on its captured frames us-
ing color and edge features. The PTZ camera node periodi-
cally sends the location information of the tracked person to
the central PC. Using corresponding blobs from each cam-
era, the system can triangulate the location of people so that



global 3D tracking is achieved. 1

Given the observed trajectories, activity density can be
modeled using anisotropic kernels [5], and an object’s PDF
can be estimated by normalizing the activity density map
using the normalization factor Na,

pa(x⃗|r) = Na

Ti∑
k=1

Ka(x⃗ − x⃗k) (6)

where Ti is the total number of tracking points observed.
For each tracking point p, we first compute the resultant
V⃗ (p) of the motion vectors passing through that point in
the same trajectory. The Gaussian kernel Ka is scaled and
rotated using the magnitude |V⃗ | and the direction θ of the
resultant vector respectively. Note that different from the
method in [5] where only one anisotropic kernel is com-
puted for each location using the average of all the motion
vectors passing through that grid node, in our approach a
grid node may have more than one kernel computed. The
kernel for each tracked point is calculated using only the
motion vectors passing through this node and on the same
trajectory. By this means small scale movements are pre-
served. Figure 5 (a) shows two computed anisotropic ker-
nels overlapping in one location. Figure 5 (b) shows the
target’s PDF estimated with activity density after 137 tra-
jectories were recorded.
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Figure 5. Activity density. (a) Anisotropic kernels. (b) Accumu-
lated activity density by people tracking.

4.3. Fusion of two measurements

The measures of detection history and activity density
defined above can be used separately to estimate the prior
PDF of the target. We can also compose them together to
get an overall estimate of the prior PDF,

p(x⃗|r) = Nph(x⃗|r) · pa(x⃗|r) (7)

1The tracking subsystem is also tolerant to failure or task interruption of
the camera agent by adopting multiple “Fault Containment Units (FCU)”
[5] to achieve redundancy in 3D tracking.

where N is a normalization factor that ensures that the
sum of probability from all nodes is 1.

5. Experimental Results
Our experimental smart space consists of four fixed Sony

EVI-D100 PTZ cameras that are used for both object search
and people tracking. Each camera is attached with a small
local computer containing an Intel 2.5GHz dual-core pro-
cessor to form an agent. The local computer is used to pro-
cess the captured images and communicate to the central
PC and other agents over an 802.11g wireless network. In
our experiment, we use a paper card with solid green color
as the target object. We tessellate the horizontal plane into
grid nodes with a resolution of 2 × 2 cm. Two horizontal
levels are considered, the floor plane (0 feet height) and the
surface of all the tables (2.4 feet height).

5.1. Cooperative search performance

To evaluate the benefit of using the cooperative search
strategy, we first compare the efficiency of the proposed co-
operative search strategy to the method without the cooper-
ation mechanism, in which all agents perform independent
search without information exchange. In this experiment no
context information is used, i.e., the prior PDF of the target
is a uniform distribution. We measured the “time to detect”
cost of the search in 10 independent tests. In each test the
target object was placed randomly in the environment. Fig-
ure 6 (a) shows the time cost when the first agent detects
the target and (b) shows the time cost when second agent
detects the target in the same test. In almost every trial, the
proposed cooperative search strategy is significantly more
efficient than the approach without cooperation.
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Figure 6. Cooperative search performance. (a) First detection. (b)
Second detection.

5.2. Search performance with Context information

This section presents the improvement of search effi-
ciency by using context information. The detection history
and activity density are applied to build target’s prior PDF
respectively and are compared to the search results where
no context information is used to refine the PDF. In these
experiments, the cooperative search strategy is always used.



Figure 7 illustrates the influence of the detection his-
tory on the time required for a 1st and 2nd detection in the
search. The PDF was formed incrementally. There are 5
repetitions of 10 trials each, each repetition uses detection
history accumulated from the previous repetition. The av-
erage time cost of those 10 search trials is calculated and
shown in the figure. Here black columns represent the re-
sult using a uniform PDF, and red columns corresponds to
the result using detection history information. The figure
shows that the 1st and 2nd detection time for search is re-
duced as more detection history is accumulated. After 50
trials, the time cost for searching for a target is about 70%
of the time required using the uniform distribution.
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Figure 7. Cooperative search performance with detection history.
(a) First detection. (b) Second detection.

The influence of the activity density is given in Figure
8. In this experiment, the system monitored the movement
of the people in the environment and accumulated activity
density over time. After 137 trajectories were generated and
used to establish the prior PDF, 10 search trials were exe-
cuted. In these trials people walk around in the room and
place the object randomly. Figure 8 shows the comparison
between the search results with and without the prior PDF
conditioned using activity density information. It can be
seen that the search efficiency was improved by an average
of 42% when the activity density is used.
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Figure 8. Cooperative search performance with activity density.
(a) First detection. (b) Second detection.

6. Conclusion and Future Works
This paper presents a complete object search system that

can be used for elder care in smart home environment. A
decentralized and asynchronous cooperative search strategy
is developed so that the system is tolerant to the failure and
interruption of the search agent. Context information that
influences the search performance is investigated. Our ex-
perimental results demonstrate that the proposed coopera-
tive search strategy is efficient and the methods we use to
incorporate context information into the target’s probabilis-
tic distribution can improve the efficiency further.

While our study demonstrates that the system is efficient
and useful, there is still room for improvement. (1) We
plan to use more sophisticated algorithm to recognize fine-
grained activities such as Walking, Standing, and Reading a
book. Object use can be inferred from activity recognition,
and can be used to build more accurate model for object lo-
cation, (2) some mobile agents can be incorporated in the
current search framework so that the blind area of the fixed
PTZ cameras can be eliminated, (3) and we are also very in-
terested in investigating how the current search system can
cooperate with human beings who may participate in the
search as well.
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