Robust Simple Assembly via Hierarchical
Belief Space Planning

Michael W. Lanighan, Takeshi Takahashi, and Roderic A. Grupen
College of Computer and Information Sciences, University of Massachusetts Amherst, Amherst, MA, USA
{lanighan, ttakahas, grupen}@cs .umass.edu

Abstract—In this paper, we discuss a hierarchical belief space
system capable of supporting task planning while simultaneously
managing uncertainty in a uniform framework. A demonstration
of the approach is conducted with a mobile manipulator perform-
ing simple assemblies in unstructured environments.

I. INTRODUCTION

In general, robot systems operate under uncertainty. The
sensitivity of performance to undetected or hidden state is
demonstrated by state of the art systems [1} 3]]. Tasks such as
opening doors, picking up objects, or turning valves require ad-
equate levels of situational certainty that varies over instances
of the same task and introduces enough risk to jeopardize the
task, the robot, and the environment.

We introduce a Hierarchical Belief Space framework to
manage uncertainty over multiple levels of abstraction and
demonstrate the approach in an assembly domain. By utilizing
object level and assembly level abstractions, the proposed
framework can create plans that are capable of both accom-
plishing the task and managing uncertainty at runtime in a
uniform manner.

II. RELATED WORK: BELIEF SPACE PLANNING

The underlying state space in partially observable systems
is a Partially Observable Markov Decision Process (POMDP).
Papadimitriou and Tsitsiklis proved that finding exact optimal
solutions to POMDP problems is PSPACE-complete and thus,
intractable [9]. A common approach to approximating solu-
tions to POMDP problems at run-time transforms a POMDP
to a Markov Decision Process (MDP) in belief space [7, [13]].

Belief space planning techniques generally combine infor-
mation gathering with belief condensation to states that solve a
task. Several belief space planning methods have been used to
address POMDPs. Maximum likelihood approaches maintain
distributions over state but act greedily on the most likely
underlying state [L0]. Heuristic techniques have been used to
address the task while minimizing the impact of uncertainty
[14]. “Dual-control” techniques employ two types of actions:
actions that reduce uncertainty and actions that maximize
reward [2]].

The belief space planning problem is defined < B, A, 7,r >
where B is the set of distributions of belief over underlying
states S, A is the set of available actions, 7 is the set of
conditional transition probabilities between belief states, and
r : Bx A — R is a reward function. Generally, these

approaches select actions a* to maximize the reward r,

a* = arg max r(b,a) (1)
a € A

Ruiken et al. introduced an Active Belief Planner [13]
that employs sets of models called Aspect Transitions Graphs
(ATGs) [8]. ATGs summarize an agent’s cumulative interac-
tions with an object to solve object identification tasks. Ruiken
et al. demonstrated how the same planner can condense belief
to target partitions of the state space [12]. By so doing, they
were able to encode common tasks such as recognizing, find-
ing, and orienting objects as goal subsets of those partitions.
Hierarchical approaches to address POMDPs have been
investigated [5, 6], but generally concern hierarchies of
actions—that is they organize actions hierarchically to reduce
planning time. Foka er al. investigated using hierarchies of
action and state in a navigation domain [4]]. In this work, we
leverage hierarchies of planners to reduce uncertainty at many
levels of abstraction in a general mobile manipulation context

using multi-modal feedback.

III. HIERARCHICAL BELIEF SPACE

In this work, we introduce a hierarchical form of the
ABP. In a hierarchy of depth n, the i planner is defined:
< B;,A;,7i,7m;, Z; > where B; is the set of distributions of
belief over underlying states S, A; is the set of available
actions, 7; is the set of conditional transition probabilities
between belief states, r;(B;, A;) — R is a reward function
parameterized by current belief distributions and actions, and
Z; is a state transformation function Z;(b;) — z;41 where
b; € B;. For i =0, fo, a distribution of feature positions and
covariances, is computed by a perceptual front-end in place of
bo. The state transformation function allows each successive
layer of the hierarchy to form observations based on the belief
state of the preceding layer. This creates higher-level belief
distributions that have been stabilized by the lower levels of
the hierarchy. A depth two hierarchy is shown in Figure

Each planner in the hierarchy selects actions a* that maxi-
mize

a® = arg max r;(b;,a),
a € A,
the reward r; at level ¢ given actions in set A;. Task-level
reward r,, depends on the confidence in lower-level abstrac-
tions. If the entropy of the distribution over belief b, is
high, it will support many different possible observations z,
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Fig. 1: Graphical representation of the hierarchy of depth two.

and, therefore, provide little new information or guidance to
the planner at level n. Actions a € A,_; can improve the
precision of the state and, thus, enhance the performance on
the task.

At runtime, the hierarchy decides how actions at each level
impact the overall task. Many different strategies exist for
coordinating interactions between multiple ABP layers and the
external environment that respect the hierarchical description
of the task. For example, directing actions to consolidate belief
bottom-up is a reasonable strategy (and will likely result in
conservative problem-solving behavior). In this work, instead
of computing discrete actions, to compute the reward function
at level n we consider receding horizon plans 7 up to length D
consisting of actions and sub-tasks € A, that configure lower
level reward. We call the set of these plans II. As such, plan
m* is selected according to

2)

7" = arg max 7, (by, )
eIl
Plans are evaluated by rolling out the planner to horizon D.
However, only the first action a* € 7* is executed, after which
a new plan is computed based on updated beliefs. Actions are
chosen at level ¢ until ; exceeds a threshold specified by the
designer.

IV. DEMONSTRATIONS

Recent work has started to utilize ARcubes [13]] to form
simple assemblies such as towers [15]. In that work, stochastic
actions during assembly were not considered. As a result,
occasional failures occurred when objects were not placed
precisely in the assembly. Without pro-active management
of uncertainty or special purpose recovery mechanisms, such
failures require external resets of the system.

We demonstrate the effectiveness of the hierarchical belief
space to manage uncertainty at both the object and assembly
levels to reduce the need for external resets in three simple
assemblies: a simple place with external perturbations, a
“tower” of two blocks, and an “pyramid” composed of three

blocks. Assemblies are specified by configurations of ARcube
features in specific positions. Demonstrations use the uBot-6
mobile manipulator [[11].

In the demonstration, a two-layer hierarchy is considered.
The bottom layer of the hierarchy is equivalent to the original
active belief planner introduced in [13|]. This layer of the
hierarchy manages noisy interactions with the environment
using ATGs as forward models 7;. B; are belief distributions
over ARcube ATGs. ARcube ATGs include parameterized
mobility and manipulation actions in A;. The details of these
actions are described in [13]]. Information gain (with respect
to task partitions) is used as reward 7.

In the top layer of the hierarchy, belief over error in the
assembly is considered. Belief Bs is defined over continuous
spatial error. 75 and As are provided by a task-planner (such
as the output of a symbolic planner) or as a finite state
machine by the system designer. Ay consists of actions that
orient and pick-and-place each object in the assembly. For this
continuous state, so, belief is updated with

b2(521,+1) = T]PT(ZQtJrl |521,+1) / Pr(82t+1 ‘S2t7a2t)b2(82t)

S2
3)
Observations zo are of the errors between constellations of
object features with respect to the goal assembly. To form this
observation, the maximum likelihood state of B; is sampled
to “observe” expected feature locations. Missing features are
sampled using the forward models of place actions with their
respective objects. Given the goal assembly, errors are com-
puted to form the observation z;. Given z;, we compute the
observation probability Pr(zs, ., |s2,,,) with empirical models
of robot performance of the place action of the form A (u, 02).
To measure the performance of this layer, the continuous form
of Kullback-Leibler divergence Dy between the expected
error distribution at the goal, P, and the expected error
distribution By given action a € A,, is considered as the
reward ro. This is defined as
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V. RESULTS

Snapshots of the demonstration with external perturbations
are shown in Figure [2] The evolution of the task-level reward
ro and lower level belief b; in terms of actions selected during
that demonstration is shown in Figure [3] After the robot
places the first object in the assembly, a researcher disturbs
the intermediate state by flipping the placed cube (Figures
[2c). Due to the unexpected transition, the robot is no longer
confident it has satisfied the sub-task (placing the object in the
correct orientation). As such, the lower level planner selects
lifting, flipping, and orbit actions (Figure to condense
belief back on the target. The robot then picks and places
the object (Figure and observes the outcome (Figure
and determines it has completed the task. The completed
assemblies for the “pyramid” and “tower” tasks are shown
in Figure []
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Fig. 2: Outcomes of intentional perturbation by an outside force. The robot is no longer confident it has placed the object in
the correct orientation after the unexpected action outcome (a-c). The robot re-configures the lower level planner to reduce
this uncertainty (d-e). After the uncertainty has been addressed, the robot replaces the object in the assembly in the correct

orientation (f-g).
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Fig. 3: Evolution of reward 7o and belief b; during the
demonstration in Figure 1. The top graph shows the expected
ro of the current task and the next task. The bottom graph
shows by for the orienting task. The letters in the graph
correspond to the letters in Figure E}
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Fig. 4: Two example assemblies the robot built with the
proposed framework: an “pyramid” with three blocks (a), and
a two-block “tower” (b).

VI. CONCLUSION

In this paper, we introduced a hierarchical belief space
framework that manages uncertainty at multiple levels of
abstraction. Preliminary results using a mobile manipulator in
an assembly domain indicate that this framework can address
uncertainty and task planning in a uniform framework.
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