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Abstract—Belief-space planning (BSP) has limited usage in
robotics as methods quickly become computationally intractable
with a growing number of states, observations, and actions. On
the other hand, the tasks that can be defined and the solutions
that can be found depend on the granularity of states, actions,
and observations. As a result, the capabilities and performance
of planning and reasoning systems for robots using BSP heavily
depends on the representation of the world, the robot, and
its own capabilities. We contend that robots must represent
interactions with the world, use these models to parse run-
time feedback, and accumulate belief over subsets of the model
space that lead to success in the task. Moreover, we suggest that
suitable abstractions are based on the capabilities of the robot.
State, action, and observation spaces can then be derived from
these models, resulting in compact representations with little
limitation to the expressiveness. We propose using a compact,
expressive representation for models based on generalization of
the aspect graph used in computer vision to describe objects. We
extend the models to support multimodal inference of geometrical
information needed for motor control.

I. INTRODUCTION

To perform tasks autonomously in the world, a robot usually
perceives its environment, estimates the state of itself and of
the world around it, plans a sequence of actions to reach a
goal, and then executes this sequence of actions. This process
is repeated during execution to update the state estimate and
replan as necessary. These steps are difficult in real world
scenarios due to partial and uncertain observations, stochastic
actions, and state transition uncertainty itself.

A popular method to formulate the general problem is as a
partially observable Markov decision process (POMDP) [15}
2, 4]. A POMDP is specified by the tuple
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where S is the set of state, A is the set of possible actions,
T:5xAxS —[0,1] is the set of conditional transition prob-
abilities between states, R : S x A — R is the reward function,
Z is the set of possible observations, ® : Ax Sx Z — [0, 1] is
the observation function, and « € [0,1] is the discount factor.
As the state S in the POMDP is only partially observable, we
use the concept of a belief state, b, to represent the probability
distribution over states. All possible belief distributions b form
the set B. An optimal solution to the problem expressed by
such a POMDP is given by the policy 7 : B — A which
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maximizes the reward for a possibly infinite horizon. The
optimal action at a timestep maximizes the expected future
discounted reward E [y ;2 v r].

There exist many algorithms for solving POMDPs. How-
ever, POMDPs quickly become computationally intractable
as the number of states, observations, and actions grows.
Moreover, the range of tasks and solutions depends on the
granularity of states, actions, and observations. As a result, the
performance of a planning system for robotic systems heavily
depends on the representation of the world, the robot, and
control capabilities. A poorly chosen representation can result
in high complexity during planning or a lack of expressive-
ness. High complexity will make even approximate planning
intractable for online use on a robot. Lack of expressiveness
results in limited capabilities to interact with the environment
or to define tasks accurately. For example, the popular grid
world domain is simple enough for possibly tractable planning,
but it offers almost no usefulness for real robot control.

We contend that suitable abstractions of the world are
required that depend on the capabilities of the (specific) robot.
State, action, and observation spaces can then be derived from
these models, resulting in compact representations with little
limitation to the expressiveness.

In the following sections we present a knowledge repre-
sentation that aims at meeting these requirements to support
tractable planning without sacrificing expressiveness.

II. TECHNICAL APPROACH

We propose a knowledge representation based on object
models. For each object a model is built based on the known
(learned) interaction capabilities of the robot with the object.
The models are equally suitable to model objects and environ-
ments [10].

A. Models

Consider a model that describes an object. The proposed
model is based on the concept of Aspect Transition Graphs
(ATG) [5L 19, [13]]. This representation defines all the features
of the object that are detectable from a single, fixed sensor
geometry (called an aspect) and organizes them in a multi-
graph [13| 14} [7, |6l [8]. Nodes in the graph are called aspect
nodes. Each aspect node is associated with an aspect defining



the set of features that can be perceived together. Edges
between aspect nodes represent actions and parameters that
transform one aspect nodes into another.

We extend the ATG model with geometric information.
Features of aspects and actions are specified and parametrized
with respect to an object frame [12| [10]. This improves
differentiation of aspects since geometric constellations of
features are much richer than matching based on bags-of-
features. Additionally, the geometric information in the models
can be used to predict sensor geometries for new observations
and supports better pose estimation. Actions are much more
expressive and robust without increasing the complexity. The
impact on the state and action spaces is discussed in Sec-
tions [[I-BT| and [[T-B2| respectively. Actions are implemented as
controllers with parameters, and these parameters along with
estimates of the cost of the action are stored in the ATG.
ATG models can be hand-built or autonomously learned by
the robot [7, 6} 8, [16].

As aspect nodes are based on perceivable features of the
object as well as the interaction possibilities known to the
robot, the aspect nodes of an ATG represent the states of
an object that matter to the robot. Using aspect nodes as
an abstract state = reduces the size of the state space (see
Section [[I-BT). The ATG also contains all relevant (known)
actions to interact with the object. Therefore, out of all
possible action parameterizations, only useful ones provided
by the ATG need to be considered. Additionally, the ATG
provides forward and observation models for belief update and
planning.

B. Impact on Belief-Space Planning

The choice of representation can have a large impact on
the complexity and expressiveness of a planning method. In
this context, we discuss the choice of a state, action, and
observation representation which is based on ATGs.

1) State Representation: When considering general capa-
bilities of a robot to interact with an object, a large number of
actions with continuous multi-dimensional parameters have to
be considered. Even typical approaches such as discretization
still result in too large a state space and too many actions to
consider for efficient planning.

Let us consider a state representation for manipulation of
an unidentified object. The state of the object consists of
the type of the object—one of |O] known modeled objects.
Additionally, an estimate of the pose ¢ of the object in SF(3)
is required to perform actions. The resulting state space is
the cross product of possible object types with all possible
poses. Even for a moderate number of known object models
and a reasonably well discretized parameter space for poses,
this will result in a very large state space and be prohibitive
for planners.

In our framework we use an ATG to model the control
interactions between the robot and each modeled object. The
state space is based on the abstract state of the robot with
respect to the object which is represented by aspect node x.
The set of all aspect nodes from every known object is denoted

as X. The size |X| can be approximated as the number of
known object models |O| multiplied by the average number
of aspect nodes per object. The pose ¢ of the object is
still required to perform actions. The resulting state space is
based on the cross product of possible abstract states = and
possible poses ¢: S = X x Q. In general belief-space planning
frameworks, the belief could be spread over a large number of
states of X x Q. In our framework, based on the structure of
the ATGs and the definition of aspect nodes x, a unique pose
q can be calculated for each aspect node x from observations.
The marginal belief bel(z;) in aspect node x; is the sum of
the belief in that aspect node with all specific poses g;:

bel(z;) = Z bel(z;,q;) (2)
J

with 0 <4 < |X|and 0 < j < |Q|. As a single pose g can be

calculated for aspect node z;, all belief bel(x;) is concentrated

in that combination of aspect node and pose resulting in

bel(x;) = bel(x;, qr)- (3)

For all other poses g; with j # k the belief is zero and
despite not being handled explicitly, is dealt with correctly
and completely. As a result, for each aspect node x there is
exactly one pose q that needs to be considered and the effective
size of the state space is reduced to | X|. All other states of the
original state space are still available but have zero probability
and do not negatively impact the planner.

2) Action Space: All actions a in set A are defined by a
type and parameters: A = types X parameters. The action
parameters can be high-dimensional to support complex ac-
tions available to robots acting in human environments. For
example, a simple controller for bimanual grasps could take
3D positions for two hands. Similar to the state space, any
discretization still keeping the expressiveness of the actions
intact will result in a large number of parametrizations for
each action type and thus in a very large size of |A|. Some
approaches deal with this complexity by using robot-centric
descriptions of the actions (e.g. a bimanual grasp is always
just happening in a hard-coded position in front of the robot),
but this method lacks expressiveness for anything but highly
controlled environments. Alternatively, the state description
can include that the robot is in the correct pose for such a
robot-centric action to work. This would result in a much
larger state space.

For belief-space planners, transitions 7'(s, a, s’) need to be
known and are typically enumerated. Each time a belief update
is performed, all applicable actions need to be considered. This
is especially costly when rolling out belief for several steps
into the future as the number of actions determines a branching
factor in the search tree.

In our framework, for each abstract state the corresponding
ATG stores all available actions together with parametrizations
in object frame. At runtime, for a state s; = (x,q) the
available actions can be retrieved from the ATG. To apply
process updates, a transition model has to be available for all
state action pairs. The ATGs provide an easy mechanism to



match an action from a state s; to the corresponding action
for any other state s, based on the pose information of s;
and sy. Despite an action space of theoretically infinite size,
only few actions have to be stored. This comes at the cost of
having to determine corresponding actions at runtime as pose
information is not known a priori. When forward planning the
effect of actions, the ATG models provide a list of relevant
actions with parametrizations. This drastically reduces the
branching factor in a search tree for planning without reducing
the available actions and thus the expressiveness.

3) Observation Space: In order to perform planning steps
to simulate the outcome of actions, all possible resulting
observations have to be considered. The number of possible
expected observations determines another branching factor in
the search tree when rolling out belief over several actions and
observations and is one of the limiting factors for belief-space
planners. As with state and action space, the observation space
is very large with several simultaneously observed features
with feature types, 2D or 3D location, possibly orientation,
and other continuous variables for other parameters.

We use aspects z; of an aspect node xz; as observations.
Instead of using geometric constellations of features with con-
tinuous variables directly as observations, we use a matching
mechanism to generate support for perceptual aspects. This
limits the number of possible observations to a finite number
and enables proper normalization of p(z;|s) for each state s.

The ATG model provides an efficient way of predicting
possible future observations. As a result, only applicable
observations can be acquired from the ATG, and only a
limited number have to be considered during planning. For
each state s the corresponding ATG provides the expected
observation z and the probabilities p(z|s) can be precomputed
for all states s and stored in the model. As described above,
for each aspect node x there is one state s. Therefore, the
number of observations |Z| to be considered is equal to the
number of aspect nodes: |Z| = |S| = | X].

4) Representation Conclusion: While the state of a robot is
usually denoted as s, we use the benefits from our represen-
tation in order to simplify our state, action, and observation
spaces. Based on this structure, we can refrain from explicitly
enumerating some information. We showed above that the
probability of s = (x,q) is equal to the marginal probability
p(x) over aspect node x. The pose information ¢ is implicitly
contained as well but does not have any impact on the
equations. Therefore, instead of s we use = as the variable
for our abstract state. This changes the observation model to

p(z|s,a) = p(z|z,q,a) = p(z|z,a). “4)

Additionally, for the applications considered our work, all
robot sensors are constantly running. As a result, the obser-
vation probability only depends on the state, and we can use

p(z|z,a) = p(z|x). (5)
For the transition model we use

T(s,a,s") =T(x,a,2), (6)

where a lot of the details are implicitly contained as they are
updated at runtime. These choices in representation provide a
small effective size of the state, action, and observation spaces
without restricting the expressiveness of the framework.

Instead of forming a single belief over the state of all
objects in the environment, the robot maintains a separate
belief for each encountered object similar to Castanon et al.[3].
The planning then scales only about linearly with the number
objects.

For real robot applications, transition and observation mod-
els are often not available and they are often approximated
at runtime by repeatedly sampling from the belief distribution
and simulating action outcomes (e.g. [[L]). The high cost of the
simulation process can severely hinder the planning process.
The ATG models provide both the transition and observation
model and can accelerate the planning process.

C. Application

The ATG models have been successfully used in multimodal
active perception applications and manipulation applications
on a real robot. Even with model set sizes of over 100 and
multi-object scenes, a myopic belief-space planner can reliably
and quickly (average less than 3 seconds) choose actions to
successfully complete tasks [12, [11} [10].

IIT. CONCLUSION

We proposed that feasibility of belief-space planning for
real robots can be much improved if a suitable knowledge
representation is chosen. If the capabilities of the robot are
abstracted, much better compactness in state, observation, and
action spaces can be achieved without loosing expressiveness
of tasks or solutions.

We presented a knowledge representation aimed at belief-
space planning for robots: the ATG model. It is based on
the capabilities of a robot to interact with objects and the
environment. We have shown the benefits that can be achieved
by using the ATG model with respect to the compactness and
expressiveness of state, observation, and action spaces. The
models have been successfully used for online planning for
various mobile manipulation tasks on a real robot.
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