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Abstract— This paper presents an active, model-based recog-
nition system. It applies information theoretic measures in a
belief-driven planning framework to recognize objects using
the history of visual and manual interactions and to select the
most informative actions. A generalization of the aspect graph
is used to construct forward models of objects that account for
visual transitions. We use populations of these models to define
the belief state of the recognition problem. This paper focuses on
the impact of the belief-space and object model representations
on recognition efficiency and performance. A benchmarking
system is introduced to execute controlled experiments in a
challenging mobile manipulation domain. It offers a large
population of objects that remain ambiguous from single sensor
geometry or from visual or manual actions alone. Results are
presented for recognition performance on this dataset using
locomotive, pushing, and lifting controllers as the basis for
active information gathering on single objects. An information
theoretic approach that is greedy over the expected information
gain is used to select informative actions, and its performance
is compared to a sequence of random actions.

I. INTRODUCTION

The combination of representation, planning, and action
for use in robots that is applicable to open and unstruc-
tured domains is an important and challenging milestone. In
general, state is only partially observable and the outcome
of actions is stochastic. Furthermore, states and actions
at the low-level are incompatible with the representations
required for robust and efficient planning, error detection,
and recovery in the presence of uncertainty.

In this paper, we address the aforementioned issues by
developing probabilistic action-based forward models and
belief-space planning mechanisms. We employ forward mod-
els defined by aspects, a geometric constellation of features
present in a particular field-of-view. A Dynamic Bayes Net
(DBN) is used to fuse the history of observations into a
maximum likelihood distribution over the population of such
models. We consider the posterior distribution at time t over
a history of such observations to be the belief state of a
recognition problem.

Recognition is posed as the unique identification of an
object model that takes the form of a probabilistic transition
f : xt, at 7→ xt+1 summarized in an aspect transition graph
(ATG) for each known object where at is action and xt is
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state. A belief state is projected forward through a population
of ATGs to select actions that will likely decrease the
uncertainty of future belief states. The result is the Active
Belief Planner (ABP).

II. BACKGROUND AND RELATED LITERATURE

There is substantial evidence that human visual learning is
facilitated by coupling perception and action [1]. The active
vision community advocates exploiting actions that change
sensor geometries in order to actively improve confidence in
perceptual feedback and information gain [2]. Aloimonos et
al. introduce the first general framework for active vision in
order to improve the quality of tracking results [3]. More
recently, Denzler et al. demonstrate how altering sensor
geometry can be used effectively to deal with limited field-
of-view and occlusions in the scene [4].

The partial observability and uncertain nature of these
types of problems are handled by the use of partially observ-
able Markov decision processes (POMDPs). Sridharan et al.
introduce a hierarchical POMDP to plan visual operators to
recognize multiple objects in the scene [5]. Eidenberger and
Scharinger formulate an approximate solution as a POMDP
with a horizon 1 value function. They demonstrated that this
approach generates next viewpoint actions that successfully
recognize multiple objects in a cluttered scene [6]. Hsiao et
al. [7] utilize a decision theoretic solution to a POMDP to
determine relative pose of a known object. They show that
rolling out belief states by just two plies can lead to a drastic
decrease in the number of actions, but that multi-ply planning
quickly becomes computationally prohibitive.

While most studies in active perception do not consider
the use of manipulation, some results exist in the literature
that incorporate both vision and manipulation to recognize
objects. Hogman et al. use the action-effect relation to
categorize and classify objects [8]. Browatzki et al. [9] use
a similar action selection metric and transition probabilities
on a view sphere but only employ in-hand rotate actions that
change viewpoints between visual keyframes recorded in a
model.

Information theoretic planning approaches usually consist
of a belief update function, a sensor model that computes
the probability of observations given states and actions, and
a planner that maximizes the information gain for a task and
expected future belief states. A Bayes filter is often used for
the belief update function, and the sensor model is either
modeled as a Gaussian distribution [10] or learned [11].

In the belief-space framework, reinforcement learning can
be applied to learn a policy that maps state to action[12, 13].



Malmir et al. propose a method that learns a policy to recog-
nize an object in the robot hand using deep Q network (DQN)
[14]. These techniques produce a significant advantage due
to the efficiency of action selection. However, they require a
large amount of training to learn the policy.

Our approach uses a model-based strategy similar to
that of Sen[15], where distributions over populations of
affordance-based object models are used to represent belief
dynamics that become more accurate as the entropy over
object models decreases. Sen showed that by pruning models
with insufficient support, it can scale to large numbers of
models (up to 10, 000).

We extend Sen’s framework by incorporating geometric
information into object models. The additional information
results in the use of forward models that can predict features
in future observations, allow pose estimation, and encode
robot-specific interaction options for each model. Moreover,
the move away from bags of features techniques results in
reduced false positives. In addition, we relax the pruning
conditions by terminating rollouts of the belief that are below
a set threshold instead of purging the corresponding belief
entirely. This way, the system has the potential to recover
from errors.

III. TECHNICAL APPROACH

This paper belongs to a class of information theoretic
planning approaches to solving belief-space MDPs. We use
inexpensive affordance-based models for objects which are
the basis of the belief states. Moreover, we employ the
aspect transition graph (ATG) to propagate belief states for-
ward through candidate actions in the Active Belief Planner
(Fig. 1). Furthermore, we propose a means for threshold-
ing expansion of belief states with insufficient support so
that belief condensation quickly leads to significantly better
performance. The terminology used in this manuscript is
summarized in Table I.

TABLE I: Relevant notations and symbols used throughout this manuscript.

Notation Definition
at the action selected at time t
st a 3D scene of objects in the world at time t
fi the ith feature defined in terms of type ∈ R3×3

representing Cartesian mean and covariance
an array of environmental features detected

f t at time t in the scene st from the current
sensor configuration

zt observations supported directly by features f t ⊆ f t
xt aspect nodes supported by f0:t ⊆ f0:t

the object at time t defined in terms of
a unique id ∈ Z, µ ∈ R6,Σ ∈ R6×6

ot representing a unique pose in SE(3) recovered
from observation, and a set of tuples 〈x, a〉
representing the nodes and edges in the ATG.

A. Object Representation
1) Aspect Geometry: In general, only a subset of the

features attributed to an object (called aspect) can be de-
tected from the current sensor geometry. The characteristic
geometry of the features comprising an aspect is used to
parse sensor data.

Fig. 1: The recursive filter for condensing belief in the probabilistic object
model. Predictions on how actions cause aspect changes (and by inference,
changes in the distribution over objects) are used in the belief-based planner
to reduce uncertainty in the model space. The belief-based planner is
summarized in Algorithm 1.

Algorithm 1 Overview of Belief Planner
1: t = 0
2: bel(x,o)0 = initialize model priors()
3: while TRUE do
4: zt = make observation()
5: bel(x,o)t = update model posteriors()
6: a∗t = plan action()
7: execute(a∗t )
8: t = t+ 1
9: bel(x,o)t = update model priors()

To match a model aspect, the features must be of the
same type (e.g. “visual edge” or “tactile surface normal”),
and the geometry must match. There are many ways to
match geometric templates. If it is possible to solve the
feature correspondence problem easily, then a number of
least squares techniques could be used. Alternatively, voting
algorithms like RANSAC [16] or Hough transforms [17] can
be applied. This paper uses the latter (Sect. III-B).

2) Aspect Transition Graph (ATG): Aspect transition
models are constructed from extensive, cumulative experi-
ence with the object under controlled conditions [18–21].
However, we use these representations as forward models
during problem solving behavior in non-ideal contexts that
include sensor noise, suboptimal lighting, missing informa-
tion (occlusion), and extraneous information (distraction)
arising from scenes that can contain multiple objects in
(initially) unknown arrangements.

The ATG model is defined as a directed multi-graph G =
(X ,U) where X denotes a set of aspect nodes connected by
action edges U . Each edge u ∈ U is a parametrized skill
describing the actions a robot may perform from belief state
xt to change the sensor geometry. These models encode the
transitions (along edges in the graph) as learned search dis-
tributions built from an agent’s previous interactions with the
object. Search distributions are defined to be (multivariate)
Gaussian distributions N (µ,Σ) that describe the change in
the sensor geometry relative to the object where the robot



has successfully detected the outcome aspect in the past.
Search distributions may be learned autonomously using

structure learning techniques where transition functions cor-
responding to re-useable structures in the world are obtained
and stored in memory. The models used in this paper are
the results of learned search distributions for edges corre-
sponding to the ORBIT action [21]. The remaining search
distributions for PUSH, LIFT, and FLIP are hand generated
in the current implementation. However, the same approach
should be able to learn these distributions as well.

B. Model-Based Aspect Detection

The aspects detected in the features f t are computed by
matching model aspects (feature types and geometry) to the
current observation (make observation() in Fig. 1). We
would like to estimate the distribution of support for model
aspects p(zt|f t) as well as the pose at time t of all of the
objects that could have generated these observations.

The proposed recognition system extends the generalized
Hough transform [17]. Given a random variable representing
the distance between features fi and fj , δij = (µ ∈ R, σ ∈
R), the area of intersection between the model distance
distribution and the observed distance distribution provides a
matching score that is used to cast votes for the location of
the object frame. The tally over all feature pairs is stored
in an accumulator array in R3 and produces a dominant
peak. Using this representation for the aspect geometry, the
fully connected graph with all model distance distributions
δij and a Hough voting table for each pair are stored in
the aspect model. Algorithm 2 summarizes the Generalized

Algorithm 2 Aspect-Based Generalized Hough Transform

1: initialize aspect models & Cartesian accumulator array
2: for all 0 ≤ i < NUMFEATURES do
3: for all i+ 1 ≤ j < NUMFEATURES do
4: (µij , σij)=SAMPLE SCENE 3D DISTANCE(i, j)
5: for all 0 ≤ k <NUMASPECTS do
6: if 〈fi, fj〉 ∈ xk then
7: score ← scoreij(µij , σij , xk.δij)
8: CAST HOUGH VOTES(i, j, k, score)

Hough Transform for classifying model aspects in the scene.
In lines (2) and (3), all pairs of features detected in the scene
are considered to define possible geometric (sub)structures.
In line (4), samples of the distance between features fi and
fj are used to approximate a Gaussian inter-feature distance
distribution. In the loop defined by lines (5)–(8), this quantity
is compared to all of the inter-feature distance distributions
stored in the aspect models for these features using the
Gaussian correlation.

C. Belief Update

Belief over aspect nodes bel(xt) is updated based on
the executed action at and the new observation zt+1

(update model prior()/posteriors() in Fig. 1).
Given transition probability p(xt+1|xt, at), the belief is

updated by

bel(xt+1) =
∑
xt

p(xt+1|xt, at)bel(xt),

where bel denotes that the posterior is due solely to action
at. Incorporating the new observation yields

bel(xt) = η p(zt|xt) bel(xt), (1)

where η is a normalizer. Based on the belief over aspect
nodes xt we can calculate the belief over objects ot:

bel(ot) =
∑
xt

p(ot|xt)bel(xt).

D. Affordance Model-Based Planning

The model-based Active Belief Planner (ABP) uses the
forward model to expand a search tree through several
candidate actions and score future belief states using in-
formation theoretic measures (plan action() in Fig. 1).
In principle, the search tree can be expanded to any depth,
however, without an auxiliary policy structure, the size of the
tree and the planning time is prohibitive. We propose that the
search tree should be expanded to a fixed depth. Algorithm 3
outlines how the ABP calculates 1-ply greedy information
gain for each action based on the available action choices in
the ATG. All required information for predicting expected
future belief is contained in the object models. Transition
probabilities for the process update p(xt+1|xt, at) are stored
in the edges of the ATG. The aspect geometry inside the ATG
provides an expected observation zt+1 for each expected
future aspect node xt+1. After performing an observation
update using Equation 1, the entropy H(ot+1) can be com-
puted. Finally, we calculate the expected information gain
for each action at over objects as

IG(ot, at) = H(ot)−H(ot+1|at).

Then, the planner selects the best action based on the highest
information gain. The motion planner of the robot examines
the feasibility of the selected action, and if the action is not
feasible, the planner selects the next best action.

The complexity of the planning algorithm for a greedy
1-ply plan is O(|A||X|2) where A is the set of eligible
actions and X is the set of aspect nodes. The most expensive
step in the planner is the measurement update of all aspect
nodes xt+1 with each expected observation zt+1 inside the
prediction calculation. But since zt+1 is only dependent on
the model, all values for p(zt+1|xt+1) can be precomputed
to greatly reduce computation cost.

Additionally, the influence of expected observations zt+1

on the entropy and information gain for an action at is
minimal if they are generated from expected aspect nodes
xt+1 with low probability. Excluding such xt+1 from the
prediction calculation can reduce computational load while
having negligible impact on the prediction result. We use
threshold αmax (bel(xt+1)) (relative to the highest current
belief) to exclude such belief from the prediction calculation.
As a result, the complexity of the problem is reduced to
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Fig. 2: The uBot-6 performing an information gathering FLIP action on a target ARcube with uniform mass distribution. The action causes a 90◦ rotation.

O(|A||X||X ′t+1|) where |X ′t+1| is the number of aspect
nodes that have belief above threshold. Typically, belief is
initially distributed over a large number of aspect nodes and
even greedy search can take a long time after the very first
observation. We observed that, even for a model set of highly
similar objects, the number of aspect nodes decreases very
quickly with every action.

Algorithm 3 Active Belief Planner

1: α = Future observation update threshold
2: τat

= 0 for all at
3: IG = {}
4: for all at available in ATG do
5: for all xt+1 do
6: bel(xt+1) =

∑
xt
p(xt+1|xt, at)bel(xt)

7: for all xt+1 do
8: if bel(xt+1) > αmax (bel(xt+1)) then
9: zt+1 ← ATG(xt+1)

10: for all xt+1 do
11: bel(xt+1) = η p(zt+1|xt+1) bel(xt+1)
12: for all ot+1 do
13: bel(ot+1) =

∑
xt+1

p(ot+1|xt+1)bel(xt+1)
14: H(ot+1|at) = −

∑
ot
bel(ot+1)log(bel(ot+1))

15: else
16: H(ot+1|at) = H(ot)
17: τat = τat + bel(xt+1)H(ot+1|at)
18: IG(ot, at) = H(ot)− τat

19: IG = IG ∪ IG(ot, at)
20: while arg maxat

IG is not feasible do
21: a∗ = arg maxat

IG
22: IG = IG \ IG(ot, a

∗
t )

23: return arg maxat
IG

IV. THE EXPERIMENTAL SYSTEM

A. ARcube Benchmark

The ARcube domain is designed to control for varying
performance in perceptual front ends and varying motor
geometry and to focus on the influence of representation
and planning for visual and tactile recognition tasks. The
nature of the ARcube objects in this domain supports easy
generation of large numbers of very similar objects that
require combinations of several visual and manual actions
to differentiate—an ideal domain for examining planner
efficiency.

ARcubes are rigid cubes whose size can be adjusted to
meet the requirements of task specifications. Each of the six
faces of the cube is marked with a single ARtag. The open-

source ARToolKit is available for detecting and localizing the
tags as a proxy for more general purpose visual processing.
Visual observations of these features establish the location of
the center of each tagged face. The permutation of unique
tags applied to objects provide a simple means of controlling
the complexity of recognition experiments. The number of
visually differentiable ARcubes in the model set given n
unique ARtags is |M| =

(
n
6

)
· 5 · 3! enabling easy creation

of very large model set sizes.
ARcubes are only partially observable from any single

sensor geometry. The natural sparseness of features on any
one cube leads to a large degree of ambiguity. Experimental
recognition tasks constructed this way are very challenging,
requiring multiple sensor geometries to fully disambiguate
objects within a set of test objects. Furthermore, the effi-
ciency of the sensing strategy varies based on the composi-
tion of the model set.

In addition to surface markings via ARtags, otherwise
identical objects can be eccentrically weighted at each face,
increasing the size of the model space six folds. These cubes
are visually identical and can only be differentiated through
the transition dynamics of manual actions.

B. Experimental Platform – uBot-6

The robot platform on which experiments are conducted
is the uBot-6 [22], a toddler-sized, dynamically balancing,
13-DOF mobile manipulator developed at the University of
Massachusetts Amherst (Fig. 2). The four actions enumerated
in Section IV-C were implemented on this platform and
encoded in the ATGs for the objects described in Section IV-
A. A separate model was constructed for each object.

C. Information Gathering Actions

The following parametrized skills are implemented as
information gathering actions for a given population of
models:

1) ORBIT – A locomotive action in which the robot
drives and reorients itself toward the target object, thus,
changing the viewpoint. An angle θ about the world
ẑ-axis is used to parametrize the action.

2) PUSH – The robot extends its arm and pushes along
a particular normal on a face of an ARcube. Push-
ing causes different outcomes depending on the mass
distribution—the ARcube will either move approxi-
mately straight ahead causing no visual change or pivot
approximately 45◦ about the world ẑ-axis, revealing a
three-feature visual aspect.

3) LIFT – The robot performs a grasp on the object near
the geometric center, raises the object, and then places it



down. For a uniformly weighted object, this sequence of
actions causes no reorientation or visual change. Given
an object with eccentric mass along the top-most face
of the cube, the action results in the object flipping 180◦

around the axis between the hands. As result, the mass
is re-positioned at the bottom of the cube.

4) FLIP – Like LIFT, this action consists of a sequence
of primitives, however, the grasp goals are closer to the
body of the robot. For eccentrically loaded objects, this
action causes the mass to be at the base of the object. In
the uniform mass distribution case, it results in moving
the front face to the top and revealing the bottom face
of the object.

Figure 2 shows an example of uBot-6 executing a FLIP
action.

V. EXPERIMENTAL RESULTS

A large set of simulated and real robotic platform exper-
iments are conducted to compare random action selection
against action selection under a greedy 1-ply planner in
solving the object identification task.

Simulated experiments contain three model populations
(M) of sizes 30, 60, and 120. Each of the three sets are
randomly chosen out of the set of 210 possible distinct cubes
described in Section III-A. The uBot-6 experiments used a
model set of size |M| = 30 that consisted of 18 visually
unique objects. Of those, two are selected, and for each, six
of its eccentrically weighted counterparts are appended to
the set.

A. Simulated Results

A simulation (of the sensor readings and actions) is used
to demonstrate the scalability of action selection under the
greedy planner with increasing model size. To validate the
simulation, trends present in these results are compared to
those obtained from the real system. Outgoing transition
probabilities are sampled to simulate potential candidates for
action outcomes, which are chosen at random based on the
probability of outcomes given in the model from the current
state. For each run, a randomly chosen object is selected

TABLE II: Simulated comparison of random action vs. action selection by
the ABP (α = 0.1) for different model set sizes.

|M| Method Obj. Bel. Entropy Actions Time (s)

30 Random 0.89± 0.24 0.29± 0.49 14.2 531.3
ABP 1.00± 0.00 0.00± 0.00 4.5 173.8

60 Random 0.94± 0.16 0.17± 0.22 20.2 756.5
ABP 1.00± 0.00 0.00± 0.00 5.1 205.4

120 Random 0.93± 0.16 0.25± 0.48 18.8 686.1
ABP 1.00± 0.00 0.00± 0.00 5.9 264.4

and simulated for 30 actions. The goal is to identify the
object’s identity within the model space. We compare the
greedy ABP to random action selection by running both
of these approaches on 30 different objects for each of the
three model sets consisting of |M| = 30, 60, and 120.
Table II illustrates the results. The ABP approach condenses
belief on the correct object by reducing the entropy over the
population of models. The entropy H(ot) listed in the table

is the entropy of the population of objects at the end of the
trial. With α = 0.1, the planner takes significantly fewer
actions and requires less time overall in comparison to
random action selection. The average time shown describes
the time necessary for the object posterior to exceed 0.95
or for the maximum number of actions (30). It is important
to note that action time dominates; the planning time per
action for the greedy ABP was around 1.5 s in the worst case
and on average less than 0.5 s. Both approaches theoretically
converge to the correct identification as t → ∞, however,
these results show only 30 actions or less.

B. Object Identification Task on uBot-6

The results of 20 trials using uBot-6 are summarized
in Table III; these results describe 10 trials each of the
greedy ABP and the random action selection approaches.
Statistically significant trends indicate that the greedy ABP
outperforms random by condensing belief faster (both in
time and number of actions) towards the correct model
in comparison to random. These trends agree with the
simulation results for the same task. In Figure 3 the slight
drops in the correct object belief are a result of action
failures; the unlikely outcomes in transitions contribute to
increasing belief in other object models that encode such
outcomes. The greedy approach has little trouble converging
to the correct object, which is similar to the results seen
in simulation, but random has more trouble converging to
the correct model. Discrepancies between the simulation and

TABLE III: Object scene experiment using uBot-6 (α = 0.1)

|M| Method Obj. Bel Entropy Actions Time (s)

30 Random 0.48± 0.42 0.98± 0.72 8.7 1149.1
ABP 0.98± 0.04 0.14± 0.21 4.1 680.6

robot results can be attributed to differences in the hand-built
transition probabilities and estimated action costs from the
actual ones on a real robot.

Identification Accuracy: Although entropy in most cases
is driven to nearly 0.0, the most important metric for any
identification task is accuracy. Table IV shows the accuracy
results for the simulated and real robot experiments. The
greedy ABP achieved 100% in all tasks, but random mis-
classified four models in the |M| = 30 runs on uBot-6 and
three in simulation as well as one in each of |M| = 60, 120.
We consider a run to have successful classification if the
posterior of the correct model has the greatest belief out of
all models at the end of the run.

TABLE IV: Identification accuracy computed over all experiments

|M| ABP Random

Simulation
30 100.00% 90.00%
60 100.00% 96.67%
120 100.00% 96.67%

uBot-6 30 100.00% 60.00%

VI. CONCLUSION AND FUTURE WORK

We propose an active recognition system that propagates
belief through a forward model called the aspect transition



Fig. 3: Single object identification task with uBot-6 using object model set |M| = 30. Plots compare the performance of the greedy ABP (blue) versus
random action selection (red). Here, ‘e.w. Boxes’ = eccentrically weighted boxes and ‘u.w. Boxes’ = uniformly weighted boxes.

graph (ATG). An ATG has action transitions between aspect
nodes that contain sparse features with information regarding
their geometric relationships. These aspect nodes represent
the belief states. A recursive, hierarchical inference engine,
called the Dynamic Bayes Net (DBN), is used to fuse
the history of observations and actions into a maximum
likelihood distribution over aspect nodes. Using information
theoretic measures, the Active Belief Planner (ABP) success-
fully chooses actions to efficiently identify objects.

Like most information theoretic planners, the system can
suffer from intractability as the model space grows. To
combat this issue, the ABP terminates belief rollouts when
the belief falls below a set threshold. This is a relaxation
of pruning conditions set by a previous planning frame-
work, where corresponding beliefs were purged. The relaxed
pruning condition allows the system to have the potential to
recover from errors. Thresholding the belief rollouts reduces
the number of beliefs that need to be considered within the
first few actions, which enables multi-ply planning to be run
in real-time on robotic systems. In fact, continued work that
follows this paper has improved the efficiency of the planner,
allowing the robot to plan up to 2 to 3-plies. Additionally, it
has been extended to handle recognition of multiple objects
in a scene.

Future research is aimed at investigating methods to fur-
ther reduce planning time. Currently, all actions are chosen
exclusively with regard to belief condensation regardless of
action cost; a key insight is that actions have varying costs
in terms of power consumption and time. Information gain
per unit time and energy and the effects on planning and
execution remain to be studied in future work.
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