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Abstract—This paper presents a hierarchical, statistical Topic models are known agnerativenodels because
topic model for representing the grasp preshapes of a they represent the joint probability distribution over doc
set of objects. Observations provided by teleoperation are , yants and topics. The generative process demonstrates
clustered into latent affordances shared among all objects L S . .

Each affordance defines a joint distribution over position how the joint .d|str|but|on. is modeled, and illustrates
and orientation of the hand relative to the object and hOw a synthetic observation can be sampled from the
conditioned on visual appearance. The parameters of the model. As an example, to generate a single word using a
model are learned using a Gibbs sampling method. After topic model, a topic is sampled from a document-specific
training, the model can be used to compute grasp preshapes yisyrihytion. A word is then sampled from the vocabulary

for a novel object based on its visual appearance. The model . . - . :
is evaluated experimentally on a set of objects for its abity ~ 9VEN the distribution specified by the chosen topic. This

to generate grasp preshapes that lead to successful graspsProcess is repeated for all the words in the document.
and compared to a baseline approach. Thus a document is made up of words sampled from a

mixture of topics.

In our model, each “document” is an object presented
For robots performing object manipulation tasks, ato the robot. Each “word” is a single preshape of a
fordances provide a useful means of describing how tlseccessful grasp demonstrated on the object and rep-
robot can interact with objects [1]. A grasp affordanceesented by the position and orientation of the hand

is a way of grasping an object to achieve a particulavith respect to the object’s centroid. The latent “topics”
function, and is an active area of research within there the grasp affordances from which the preshapes
neuroscience community [2], [3]. For example, a coffeare drawn. It is helpful to precisely define what we
mug has at least two distinct grasp affordances: one farean by a grasp affordance: a joint distribution over the
drinking (typically by using the handle), and anotheposition and orientation of the hand relative to the object,
for transporting. The physical characteristics of an olimplied by the object’s visual appearance. A teleoperator
ject, e.g. visual appearance, provide a way of inferrindemonstrates grasp preshapes to the robot, and each of
its affordances. Further, affordances provide a natuthlese observations is modeled as a sample from a (latent)
categorization of objects based on function rather thaffordance of the object.
appearance, which may vary drastically among similar We use a tuple of parametric distributions to represent
objects. an affordance, explained in Section Ill. A probabilis-
In this paper, we describe how to learn grasp afic representation is used because demonstration via
fordance preshapes—the pose of the hand and fingegteoperation is noisy, and signal quality can have a
relative to the object just prior to initiating a graspindiigh variance, even for simple grasping actions. In the
action—from demonstration data, and use those affaentext of grasp preshape creation, generative models
dances to generate preshape hypotheses for novel objacts preferred to discriminative ones because preshapes
based on visual appearance. We model grasping stratan be sampled directly from the model. Furthermore,
gies based on a set of affordances common to all objeatsmany cases generative models converge more quickly
using a form of statistical topic model. Topic modelsusing less data than discriminative models, which is
traditionally used in information retrieval, model the codesirable in this domain, given the cost of acquiring
occurrence of words in a text corpus. Each documentdemonstration data [5].
represented as a collection of latent “topics,” where eachTo learn the parameters of the topic model, we cluster
topic is a multinomial distribution over the words in theall the observations intel groups, whereA is chosen
vocabulary [4]. arbitrarily. Each cluster is a collection of preshapes
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difference is that in applying the model to new objects,

we do not have a full set of features, and instead use
only visual appearance to infer affordances. Unlike their
model, we use the affordances learned by our model to
generate new grasps on novel objects.

There has been other work on generating grasps using
visual information. Saxena et al. [10] computes a grasp-
ing point for an object by analyzing visual features. Their
model performs a logistic regression that estimates likely
grasp positions in a 2D image based on the observed
features. Our work shares a similar motivation, to grasp
objects autonomously using vision, but the difference is
that we are computing grasp preshapes, and we explicitly
model multiple pre-grasp hypotheses for each object.
E:g- i g This gi_cture SZOWS _szxt_erSperform\i/rlgEa ﬁra?pD of the Platt [11] describes a scheme for generating pre-
arrr?s(,: haeralg(())l(:) ;ﬁ?jt’isazqu?psggdewitwa ;ittl.(()er-]ﬂng.erea:jc h:nd ;ﬁezsgrasp hypotheses based on observations of the first and
total degrees of freedom. The stereo head has four degréeedbm. Second moments of the foreground blob segment. We

use similar visual features in this work, but we generate
pre-grasp hypotheses from models of the training set of
that can be thought of as being sampled from a singiemonstrated grasps.
affordance, since an affordance is a joint distribution.
The parameters of the distribution are inferred from thd!l- REPRESENTINGAFFORDANCES IN THEMODEL
observations in the cluster using Bayesian techniquesAs previously described, each affordance is repre-
A cluster may be made up of preshapes from severgnted as a tuple of three parametric probability distri-
objects, thus the affordance it represents is in effeutions: the visual appearance of the object, the hand’s
shared between those objects. The result of learnipgsition, and the hand’s orientation just prior to grasping
the model is a set of parameters for the distributionEhese distributions are described in this section. We
representing each of thé affordances. assume that our data set consists\ofdifferent objects

The experimental platform used in this paper is Dexwith NV,,, grasp preshape examples for object
ter, the UMass bimanual humanoid, shown in Figure % Visual A
In order to collect training data, we teleoperate Dexter ppearance ) o
to perform grasps on objects, and use its stereo visionWith each affordance we associate a probability dis-

system to compute visual features. trib_utio_n over the_ space of visual appearance features.
This distribution is used to relate object appearance to
Il. RELATED WORK grasp affordances; the robot should be more likely to

Statistical topic models were originally developedise a particular affordance to generate preshapes if its
in the information retrieval community for modelingvisual appearance distribution gives high likelihood to
documents in a corpus. The author-topic model [6] arth object’s appearance.

Latent Dirichlet Allocation (LDA) [4] are two examples To compute the visual appearance, we first segment
of this approach for discovering latent topics. Griffithghe object using background subtraction. The object's
and Steyvers [7] were the first to propose using GibigentroidO,, € R* is computed by performing a stereo
sampling to learn the parameters of the model, which igangulation on the first moment of foreground blobs
the approach used in this work. in the left and right image planes. The visual feature is

Topic models have also been applied in the visioiie average second moment of the left and right blobs,
domain for object recognition and classification tasks [8]epresented as a covariance matrix Since the feature
This paper is influenced in particular by the hierarchica$pace is covariance matrices, we use a two-dimensional
part-based model of Sudderth et al. [9]. In that workiverse-Wishart distribution, parameterized by scale
they describe a visual object classifier that models eawfith « degrees of freedom:
object by computing a multinomial distribution over a - .
set of globally shared “parts.” Each part describes a P(bm [, u) = Tnv-Wishart, (byn | ). @)
cluster of image features. The set of parts in their model This distribution is unimodal and typically used as a
are analogous to the affordances described here. Qwéor for multivariate covariance matrices [12]. After our



model has been learned, each affordanedll have a Let w,,, be the canonical orientation that most closely

set of parameter@);, u,;) used to compute the likelihood matches the rotational component of the relative gose

of an appearance according to (1). Each affordance defines a discrete distribution over the
This type of feature provides a proof of concept for theet of canonical orientations:

model, and other types of visual features can be used. For

example, in other work, a multinomial distribution over a P(Wmp | $1) = Gi(wmy), ®)

set of “visual words” is used to allow each topic to havevhereg; is a Q-vector in the(Q — 1)-simplex such that

many likely appearances [8], [9]. The main requiremen; (¢) is the probability of selecting orientation

is that there must be a probability distribution to describe By using a multinomial model for grasp orienta-

the likelihood of features in an affordance. tion, each affordance can represent multiple orientations

This is useful for dealing with the symmetries that

] ~can occur when grasping using Dexter. For example,
Each grasp affordance describes a subspace in thevier can perform a side grasp on an object with

hand's twist space: every pose that allows the hand Qs thumb pointing towards or away from the robot. If
successfully grasp the object for a specific task. Thge training data consists of both types of grasps, then
shape of this subspace is determined by the geometrjgs affordance which encodes that particular side grasp
of the hand and object. We approximate this region Using| have nonzero probability of choosing both types of
a probability distribution, and the goal of our modeientation. Note that for each affordance, the probapilit

is to infer the parameters of this distribution for eachyp|e over orientation is built using the training data, so

affordance. . orientations that are more prevalent in the training set
An object can have multiple affordances: each one dgte more likely in the model.

scribes a different way of grasping the object. Although after learning the model, each affordancéas a set
the purpose of the grasp is an integral part of the notigg parametergy;, ;, ¢;) for its position and orientation

of an affordance as a functional relationship, we ar§siriputions. We can generate a preshape from that
interested in merely establishing a successful grasp. Qifordance by sampling from the distributions in (2) and

model provides preshapes that describe typical grasqﬁ using those parameters, described in Section V-A.
seen in the training set; selecting which grasp to use to

fulfill task constraints is beyond the scope of this paper. IV. THE GENERATIVE MODEL
To approximate an affordance’s subspaceSif(3), In the previous section, we described how an affor-
for computational convenience, instead of using a singlance is represented as a collection of three parametric
distribution, we split the relative hand pose into posidistributions. The topic model presented in this section
tion and orientation components. We define independeféscribes the statistical relationship between the param-
distributions over each of those spaces. eters for a set ofl affordances and the observed training
1) Position: The position of an affordance is de-data.
scribed as a three-dimensional normal distribution in The model is illustrated in Figure 2. The nodes of
object-centric space with meam and covariancex. the graph represent random variables, with the shaded
From each training grasp poipt€ RS, we model the nodes denoting the observed variables. Unshaded nodes
position of the hand:,,,, € R? in a frame centered at are latent variables that must be inferred from the data.
the centroid of the object),,. The likelihood of that Rectangles around variables denote replication, where
hand position for affordanceis: the number of times is shown in the bottom right corner.
Our model assigns one affordance to each data ob-
P(@mp | iy 5i) = N (@mp | 3, 35). (2) servation; after allgobservations have been assigned, we
2) Orientation: We represent the hand orientation oEompute the values of the affordances’ parameters. We
an affordance by using a discrete distribution over a sietke a Bayesian approach to estimate these parameters
of @ canonical orientations. Although one can definbecause we can quantify our uncertainty about their
continuous distributions ove§O(3) (cf. [13], [14]), we values by using suitable prior distributions. Moreover,
found that a discrete distribution was a simpler approagle can incorporate new data to improve our posterior
that produced satisfactory results. This technique éstimates.
justified in our problem domain of grasping household We organize the training data s@ = (b,x,w)
objects presented on a table, as we found that a small sgb A sets of object grasp features, where set
of orientations could be used to describe a large numb®as N,, examples. Datum of objectm is the tuple
of example grasps. (bimis Tmi, wmi, ), Which consists of a visual feature

B. Hand Position and Orientation



over # and ¢, with hyperparametera and 3, respec-
tively. The second moment covariance prior is inverse-
Wishart with scale? and u, degrees of freedom. The
covariance matrices for grasp positioR, also have
an inverse-Wishart prior with scalg and v degrees
of freedom [12]. The grasp position mean is given a
uniform prior.

For notational convenience, I@tcorrespond to the pa-
b T w rameters of these priors, the so-called hyperparameters,
and letC = (¢, u, ¢, u, ¥2) correspond to the parameters

\N}T’/j of the component distributions for each affordance.

y 4 A | \ \
@ @ V. PARAMETER ESTIMATION IN THE MODEL
DIOIO
A The inference problem is to compute the posterior
distribution of the latent variables given example grasp
Fig. 2. The graphical model described in Section IV. Ciréteticate points using Bayes’ rule:
random variables, shading indicates an observed varialierwise ’
they are latent. A rectangle around nodes represents agphc the
number of times written in the bottom right corner. The edgesveen p(@, z,C | D, Q) _

nodes indicates a conditional probability distributiorsciébed in the
text.

e We assume independent, symmetric Dirichlet priors

p(D|Q) ’

®)

which is intractable, although we can estimate it using
Gibbs sampling. Gibbs sampling is used when it is im-
covariance matrix, the position, and the orientation gfossible to sample from a distribution directly. Instead,
the hand, respectively. The variable represents the we sample from each dimension of the distribution con-
assignment of an affordance to the observed preshaggioned on the current state of the rest of the dimensions.
The variable describes a multinomial distribution over|n this case, the distribution we are interested in is the

the shared set of affordances for an object; in effect, gosterior assignment of affordances to data points.
defines a mixture model over affordances and describesgjyen our data se®, we use Gibbs sampling to

affordances, independent samples from the model for %e

same object can result in a different affordance being |, he following, let z_,,; denote the set of all
’ —ma
selec-ted. _ _ affordance assignments excluding,;, and letb_,,;,
Using this model, the generative process for data poigt . andw_,,; be defined similarly.

i is given below: Using the conditional independence relationships

f|a ~ Dirichlet(c) shown in the graph Qf Figure 2, the postgrior distribution
) ] over affordance assignments can be written as
z; |6 ~ Multinomial(6)
bi|zi =j ~ Inv-Wishart,, (¢;) 4) P(Zmi | Z—mis D) o< P(2mi | Z—mis Om)
w; | z; = j ~ Multinomial(¢;) X P(bmi | 2, D _1ni)P(Zmi | 2, X mi)

T |Zi :] ~ N(Mja Ej)v X p(wmz | Z,W,mi). (6)

whereX ~ D means that random variabké is sampled
from distributionD. The first line of (4) samplegfrom a
symmetric,A-dimensional Dirichlet prior with parameter
a. In the second line, the affordance assignmgnfor
this datum is sampled according tb The preshape

The likelihoods of the conditional affordance assign-
ments and hand orientation assignments are multino-
mials, and have been derived from standard Dirichlet
integrals:

component$;, w;, andx; are sampled according to the n0 +a
distributions (1), (3), and (2), described in Section llI, D(Zmi = §lZ—mi,om =1) = ﬂoi (7)
using the parameters of affordange >y gy + Aa



P(Wimi = k|Zmi = J, Z—mis Wemi) = number of iterations before samples can be considered
nZIJ/ 1+ independent. We typicqlly compute on the_ order of two
= w 5 (8 hundred “burn-in” iterations before accepting a sample.

where ng is the number of times affordancg has ) . . .
been assigned to objeé¢t and A is the number of We are mtergsted_m generating candidate preshapes
shared affordances. Likewise}” is the number of times for @ novel object given its visual features. Lex®
orientation featurek has been assigned to featufe correspond to the m_odel parameters estimated _from
and Q is the number of canonical grasp orientation§amples. The generative process for new grasps given
Since the assignment of affordances to observations i¥igual featureb, is:

statistical process, ifl is large there may be affordances 2 | b, ©®) ~ p(z b, OF)

that are not assigned to any observations. The expected
number of affordances used is a function of the number
of observations and. |z = 3,00 ~ N, 5),

At each iteration of the sampling algorithm, given ith ¢ les f h ior distributi
the current assignment of data points to affordances, thFWIt a set of samples from the posterior distribution

posterior distribution over the position of the grasp,;, Z,| ,D)’ stafistics that are independent of the_content. of
is a multivariate Studentdistribution with (n4 +—2) ndividual affordances can be computed by '”t??éf)at'”g
degrees of freedom, Where;-‘ is the total number V€ the fuII_ set of samplest For any single samip .

of features assigned to affordange This can be ap- we can estimat® and C using the affordance assign-

proximated with the following moment-matched norm rents inz*) as described in_ S_ectio_n V us?ng (7) - (10).
distribution [12]: hese correspond to predictive distributions over new

R affordances and hand positions conditioned ®rand
P(@mi | Zmi = Js Zmiy Xemi) N (Tmi | 15, 255), (9) z. Note that these estimates cannot be combined across

A. Generating preshapes for new objects

wy |z = 4,00 ~ Multinomial(gﬁ(-s)) (12)

J

where samples, since there is no guaranteed correspondence
M between affordances among the set of samples.
fi =7 Z Z Lok The first distribution in (12) can be computed as

i m=1 k|z7nk:j

p(z=1i|b;,0®) x p(by |z =1,09)p(z =i| OF))

P Inv-Wish ), (13
I n;“(n;“ +v—4) ~ Inv-Wis artﬁgs>(wi ), (13)
. M where we assume thatz =i | ©) is uniform.
Y;=6 | =2+ Z Z (@mk — fi5) (@mr — 15)" | - By following the generative process in (12), given
m=1k|zpp=j a visual feature, we can produce a set of candidate

preshapes. In this work, we assume a fixed configuration

of the fingers in the hand, such that they form an

. opposing grasp. One could easy augment the affordance

P(bmi | Zmi = J,Z2—mi, b_mi) = Inv-Wishartg, (¢;)  representation to take into account different finger con-
(10) figurations.

The conditional distribution for a visual feature co
variance is given as

with
A VI. EXPERIMENTAL RESULTS
To test the ability of the model to represent the
N 1 M (11) grasp affordances demonstrated in the training set and
vy = nA Yo + Z Z bmkc | - generate new pre-grasps, we trained the model using a
! set of household objects. Because there is no notion
At each iteration of the Gibbs sampler, we use (7) ef orientation of the object in the model, the same
(10) to compute (6). A single data point update caabject presented in a different orientation (flat, standing
be computed inO(A), and each sample output by theup, etc.) is treated as a separate object. The notation
sampler requires computing this assignment for eveopj ect - N refers to the presentation ofbj ect in a
training data point. Thus the total time to compute different orientation. There are examples in the literatur
sample given a training set with/ objects andV grasps of how this assumption can be relaxed by incorporating
per object isO(M N A). The sampler must be run for athe notion of rigid body transformations into the model

m=1k|z,,=7j
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purex—2 whisky whisky-1
Fig. 4. This picture shows the objects as they were presefated
generating grasps.The red oval corresponds to the coeeriamatrix
that was computed from the average second moments of theeaégnn
blob in the left and right cameras.

oxyclean-2 purex purex—-1

s & ™  and aset of = 6 were chosen. Note that in these
experiments, symmetric grasps were not used, that is,
the demonstrator did not perform a grasp at the same
location using a different hand orientation.

For learning the parameters of the moddl,= 10
shared grasp affordances were used. The Gibbs sampler
ran for 200 iterations of burn-in, after which the next
sample was stored. Using the single samp¥e,s; =
12 objects were presented, shown in Figure 4, and the
model generated 6 candidate preshapes for each object.
Fig. 3. This picture shows the objects in the training sete Téd The robot achieved each p'reshape configuration and then
oval corresponds to the covariance matrix that was used asualv attempted to grasp the object. To perform the grasp, the
feature for grasps with the object. robot simply flexed its fingers until a sufficient force had

been applied to the object. In these experiments a grasp
itself [15]. We chose a s&D of 31 object presentations Was judged successful if the robot was still holding onto
for training and testing. the object after moving the hand 10 cm vertically.

For training, Ny-.in = 19 objects were chosen ran- As an example of the types of grasps generated by the
domly from O, and grasps were demonstrated usingiodel, Figure 5 shows a composite image of six grasps
teleoperation. This object set is shown in Figure 3. Eagienerated for thél ocks- 3 object.
object was presented to Dexter in the middle of the )
workspace, and the right arm was used to perform &) 1h€ néve model
grasps, as shown in Figure 1. While the model specif- To analyze the performance of the model, we created
ically generated preshapes for Dexter’'s right arm, by naive model which also generated grasps using visual
applying a known affine transformation to the preshapfeatures. This model performed visual processing to
they can be used by the left arm. The set of canonicastimate the width and height of the object, and then
grasp orientations was computed using the training sgenerated grasps by selecting points on a spherical

red_coffee

= whisky—2



naive and our model, respectively. Overall, the naive
model was successful 43 out of 72 total grasp attempts.
In comparison, using the affordance model, 53 out of
72 attempts were successful; a statistically significant
improvement(p < 0.01).

In most cases, our model outperformed the naive
approach, including theabo- 2 object, which the naive
model was unable to grasp. However, our model did have
difficulty with the j el | y-1 and whi sky- 1 objects.

In both cases, although the generated preshapes were
located above the object with a suitable orientation, they
were too high for a successful grasp. This is a result
of the fact that the model is in effect summarizing
the preshapes provided in the demonstration. For novel
Fig. 5. A composite image showing six candidate grasp positfor objects, the model finds the affordance with the most
the bl ocks- 3 object. similar appearance, but the hand positions suggested
by that affordance may not adequately fit the actual

Comparison of grasp success geometries of the object. To improve performance, one
| T could incorporate a grasp controller to perform the grasp
once the preshape was achieved [16].

Since we use a statistical model, the candidate pre-
shapes generated by an affordance may vary in quality,
and in these experiments, each candidate preshape was
attempted regardless of its quality. However, as the
amount of training data increases, the expected variance
of the affordance distributions will decrease, poteniall
improving performance. In a real-world scenario the
model could be used interactively, with the teleoperator
providing additional training data to improve the quality
of the robot’s hypotheses.

Additionally, the proposed method could be improved
by performing a secondary analysis of the candidate pre-
grasps. For example, incorporating additional informa-
tion about the object geometry into candidate selection
Fig. 6. This graph shows the result of using the trained grasgel to choose the closest, non-colliding preshape_

on a set of test objects. Each bar measures the number ofsstidce .
grasps for the labeled object. The blue bars are for theenaiodel, The success rate of the model is also affected by the
and the red for the shared affordance model. number of shared affordances. In the current implemen-
tation we estimated based on the number of objects
presented, although we do not know a priori the number
hemisphere centered at the object’s centroid. The radioksshared affordances represented in the training data. If
of the hemisphere was equal to half the length of thé is too small, the covariances for the position distribu-
longest dimension of the object. The orientation of thiéion of the affordances will be large, so it may require
hand was chosen such that the palm was normal tosampling a number of preshapes before finding one that
ray connecting it to the object’s centroid, and a uniforris close enough for a successful grasp. Nonparametric
random rotation about this ray was chosen. The thr&ayesian approaches can be used to estimate the number
fingers of the hand were spread equidistant from eaoh affordances from the data itself [17].
other. The robot then attempted to grasp the objectin order to see how affordances were shared among
starting from six different locations, and grasp succesfifferent objects, we computed Table | using a single
was judged as before. sample of the posterior to show the composition of each
The results of performing these grasps are shown affordance. Each column corresponds to an affordance,
Figure 6, where blue and red bars correspond to tlaed each row denotes the training set of objects. An “x”

Number of successful grasps




Affordance
1]2]3J4]5]6]7]8]9]10

babo X X
babo-1 X
bl ocks X X
bl ocks-1 X X
bl ocks-2 X
boy X
coke_can X X
conet X X
green_can X X
jelly X | x
[ 'awn_box X
oxycl ean X X
oxycl ean-2 X
pur ex X X
purex-1 X
red_coffee X X X ) o _
tp = X X Fig. 7. This figure shows how the mallet can be segmented into
vVase X multiple blobs, and each blob can be used to generate grasiiops
whi sky- 2 X independently.

TABLE |

EACH “X” DENOTES A GRASP ON THE OBJECT IN THE ROW WAS
USED BY THE AFFORDANCE DENOTED IN THE COLUMN

indicates that some training grasp from this object wa;
used to determine the parameters of the affordance
that column. Columns with multiple “x"s indicate an
affordance that used training examples from multipl
objects. In this sample, it can be seen that 7 out of 1
affordances incorporate training examples from multipl
objects. Once the sampler has been run for enoug
iterations, we can expect subsequent samp}és to
contain very similar assignments. Different runs of the
sampler produce similar groupings of observations, al-

though the actual assignments to particular affordanca 8- This figure shows a composite image of some of the ppsh

I h . . generated by the model learned in Section VI.

will differ (e.g., the assignment found in affordance 1 il

this sample may be the assignment of affordance 5 in

another sample). side grasps of the handle that would collide with the head
of the mallet. Figure 8 shows some feasible candidate
preshapes suggested by the model.

Using this visual feature model, one can represent a
single object with multiple second moment covariances:
the model will generate grasps for each covariance,We have presented a hierarchical, statistical model
and they must then be transformed into the appropridta representing grasp preshapes among a collection of
frame. Since the model has no notion of the geometopjects, using a latent topic model. The model provides a
of the object beyond centroid and second momemtay of summarizing the data provided by a teleoperator
secondary processing should be used to filter low-quality a way that can be applied to new objects. We showed
preshapes. As an example, we presented a mallet thiwdt the model can generate successful grasp preshapes
was segmented into two blobs, as shown in Figure 7.on novel objects and outperforms a naive strategy.

Using the model learned in the previous section, we For future work, different visual features could be used
generated preshapes for each of the two blobs atuwllearn affordances specific to smaller scale features
manually filtered the candidates that collided with thef objects. As mentioned above, the model can also
mallet. For example, the model generated preshapes farimproved by incorporating rigid-body transformations

B. More Complex Objects

VIlI. CONCLUSIONS



into the representation of objects. Ideally, a model @¢f5] E. B. Sudderth, A. Torralba, W. T. Freeman, and A. S. Will
grasp affordances is learned for a canonical orientation
of an object, and preshapes from that affordance are
transformed to match the orientation of the object as it js6]
presented. Additionally, the model can be combined with
higher-level logic that selects grasp candidates based[g_)ﬂ
task constraints.
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