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Abstract—This paper presents a hierarchical, statistical
topic model for representing the grasp preshapes of a
set of objects. Observations provided by teleoperation are
clustered into latent affordances shared among all objects.
Each affordance defines a joint distribution over position
and orientation of the hand relative to the object and
conditioned on visual appearance. The parameters of the
model are learned using a Gibbs sampling method. After
training, the model can be used to compute grasp preshapes
for a novel object based on its visual appearance. The model
is evaluated experimentally on a set of objects for its ability
to generate grasp preshapes that lead to successful grasps,
and compared to a baseline approach.

I. I NTRODUCTION

For robots performing object manipulation tasks, af-
fordances provide a useful means of describing how the
robot can interact with objects [1]. A grasp affordance
is a way of grasping an object to achieve a particular
function, and is an active area of research within the
neuroscience community [2], [3]. For example, a coffee
mug has at least two distinct grasp affordances: one for
drinking (typically by using the handle), and another
for transporting. The physical characteristics of an ob-
ject, e.g. visual appearance, provide a way of inferring
its affordances. Further, affordances provide a natural
categorization of objects based on function rather than
appearance, which may vary drastically among similar
objects.

In this paper, we describe how to learn grasp af-
fordance preshapes—the pose of the hand and fingers
relative to the object just prior to initiating a grasping
action—from demonstration data, and use those affor-
dances to generate preshape hypotheses for novel objects
based on visual appearance. We model grasping strate-
gies based on a set of affordances common to all objects
using a form of statistical topic model. Topic models,
traditionally used in information retrieval, model the co-
occurrence of words in a text corpus. Each document is
represented as a collection of latent “topics,” where each
topic is a multinomial distribution over the words in the
vocabulary [4].

Topic models are known asgenerativemodels because
they represent the joint probability distribution over doc-
uments and topics. The generative process demonstrates
how the joint distribution is modeled, and illustrates
how a synthetic observation can be sampled from the
model. As an example, to generate a single word using a
topic model, a topic is sampled from a document-specific
distribution. A word is then sampled from the vocabulary
given the distribution specified by the chosen topic. This
process is repeated for all the words in the document.
Thus a document is made up of words sampled from a
mixture of topics.

In our model, each “document” is an object presented
to the robot. Each “word” is a single preshape of a
successful grasp demonstrated on the object and rep-
resented by the position and orientation of the hand
with respect to the object’s centroid. The latent “topics”
are the grasp affordances from which the preshapes
are drawn. It is helpful to precisely define what we
mean by a grasp affordance: a joint distribution over the
position and orientation of the hand relative to the object,
implied by the object’s visual appearance. A teleoperator
demonstrates grasp preshapes to the robot, and each of
these observations is modeled as a sample from a (latent)
affordance of the object.

We use a tuple of parametric distributions to represent
an affordance, explained in Section III. A probabilis-
tic representation is used because demonstration via
teleoperation is noisy, and signal quality can have a
high variance, even for simple grasping actions. In the
context of grasp preshape creation, generative models
are preferred to discriminative ones because preshapes
can be sampled directly from the model. Furthermore,
in many cases generative models converge more quickly
using less data than discriminative models, which is
desirable in this domain, given the cost of acquiring
demonstration data [5].

To learn the parameters of the topic model, we cluster
all the observations intoA groups, whereA is chosen
arbitrarily. Each cluster is a collection of preshapes



Fig. 1. This picture shows Dexter performing a grasp of the
black_drano object, as described in Section VI. Each of Dexter’s
arms has 7 DOF and is equipped with a three-fingered hand with four
total degrees of freedom. The stereo head has four degrees offreedom.

that can be thought of as being sampled from a single
affordance, since an affordance is a joint distribution.
The parameters of the distribution are inferred from the
observations in the cluster using Bayesian techniques.
A cluster may be made up of preshapes from several
objects, thus the affordance it represents is in effect
shared between those objects. The result of learning
the model is a set of parameters for the distributions
representing each of theA affordances.

The experimental platform used in this paper is Dex-
ter, the UMass bimanual humanoid, shown in Figure 1.
In order to collect training data, we teleoperate Dexter
to perform grasps on objects, and use its stereo vision
system to compute visual features.

II. RELATED WORK

Statistical topic models were originally developed
in the information retrieval community for modeling
documents in a corpus. The author-topic model [6] and
Latent Dirichlet Allocation (LDA) [4] are two examples
of this approach for discovering latent topics. Griffiths
and Steyvers [7] were the first to propose using Gibbs
sampling to learn the parameters of the model, which is
the approach used in this work.

Topic models have also been applied in the vision
domain for object recognition and classification tasks [8].
This paper is influenced in particular by the hierarchical,
part-based model of Sudderth et al. [9]. In that work,
they describe a visual object classifier that models each
object by computing a multinomial distribution over a
set of globally shared “parts.” Each part describes a
cluster of image features. The set of parts in their model
are analogous to the affordances described here. One

difference is that in applying the model to new objects,
we do not have a full set of features, and instead use
only visual appearance to infer affordances. Unlike their
model, we use the affordances learned by our model to
generate new grasps on novel objects.

There has been other work on generating grasps using
visual information. Saxena et al. [10] computes a grasp-
ing point for an object by analyzing visual features. Their
model performs a logistic regression that estimates likely
grasp positions in a 2D image based on the observed
features. Our work shares a similar motivation, to grasp
objects autonomously using vision, but the difference is
that we are computing grasp preshapes, and we explicitly
model multiple pre-grasp hypotheses for each object.

Platt [11] describes a scheme for generating pre-
grasp hypotheses based on observations of the first and
second moments of the foreground blob segment. We
use similar visual features in this work, but we generate
pre-grasp hypotheses from models of the training set of
demonstrated grasps.

III. R EPRESENTINGAFFORDANCES IN THEMODEL

As previously described, each affordance is repre-
sented as a tuple of three parametric probability distri-
butions: the visual appearance of the object, the hand’s
position, and the hand’s orientation just prior to grasping.
These distributions are described in this section. We
assume that our data set consists ofM different objects
with Nm grasp preshape examples for objectm.

A. Visual Appearance

With each affordance we associate a probability dis-
tribution over the space of visual appearance features.
This distribution is used to relate object appearance to
grasp affordances; the robot should be more likely to
use a particular affordance to generate preshapes if its
visual appearance distribution gives high likelihood to
an object’s appearance.

To compute the visual appearance, we first segment
the object using background subtraction. The object’s
centroidÔm ∈ R3 is computed by performing a stereo
triangulation on the first moment of foreground blobs
in the left and right image planes. The visual feature is
the average second moment of the left and right blobs,
represented as a covariance matrixbm. Since the feature
space is covariance matrices, we use a two-dimensional
inverse-Wishart distribution, parameterized by scaleψ

with u degrees of freedom:

p(bm |ψ, u) = Inv-Wishartu(bm |ψ). (1)

This distribution is unimodal and typically used as a
prior for multivariate covariance matrices [12]. After our
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model has been learned, each affordancei will have a
set of parameters(ψi, ui) used to compute the likelihood
of an appearance according to (1).

This type of feature provides a proof of concept for the
model, and other types of visual features can be used. For
example, in other work, a multinomial distribution over a
set of “visual words” is used to allow each topic to have
many likely appearances [8], [9]. The main requirement
is that there must be a probability distribution to describe
the likelihood of features in an affordance.

B. Hand Position and Orientation

Each grasp affordance describes a subspace in the
hand’s twist space: every pose that allows the hand to
successfully grasp the object for a specific task. The
shape of this subspace is determined by the geometries
of the hand and object. We approximate this region using
a probability distribution, and the goal of our model
is to infer the parameters of this distribution for each
affordance.

An object can have multiple affordances: each one de-
scribes a different way of grasping the object. Although
the purpose of the grasp is an integral part of the notion
of an affordance as a functional relationship, we are
interested in merely establishing a successful grasp. Our
model provides preshapes that describe typical grasps
seen in the training set; selecting which grasp to use to
fulfill task constraints is beyond the scope of this paper.

To approximate an affordance’s subspace inSE(3),
for computational convenience, instead of using a single
distribution, we split the relative hand pose into posi-
tion and orientation components. We define independent
distributions over each of those spaces.

1) Position: The position of an affordance is de-
scribed as a three-dimensional normal distribution in
object-centric space with meanµ and covarianceΣ.
From each training grasp pointp ∈ R6, we model the
position of the handxmp ∈ R3 in a frame centered at
the centroid of the object,̂Om. The likelihood of that
hand position for affordancei is:

p(xmp |µi,Σi) = N (xmp |µi,Σi). (2)

2) Orientation: We represent the hand orientation of
an affordance by using a discrete distribution over a set
of Q canonical orientations. Although one can define
continuous distributions overSO(3) (cf. [13], [14]), we
found that a discrete distribution was a simpler approach
that produced satisfactory results. This technique is
justified in our problem domain of grasping household
objects presented on a table, as we found that a small set
of orientations could be used to describe a large number
of example grasps.

Letwmp be the canonical orientation that most closely
matches the rotational component of the relative posep.
Each affordancei defines a discrete distribution over the
set of canonical orientations:

p(wmp |φi) = φi(wmp), (3)

whereφi is aQ-vector in the(Q− 1)-simplex such that
φi(q) is the probability of selecting orientationq.

By using a multinomial model for grasp orienta-
tion, each affordance can represent multiple orientations.
This is useful for dealing with the symmetries that
can occur when grasping using Dexter. For example,
Dexter can perform a side grasp on an object with
the thumb pointing towards or away from the robot. If
the training data consists of both types of grasps, then
the affordance which encodes that particular side grasp
will have nonzero probability of choosing both types of
orientation. Note that for each affordance, the probability
table over orientation is built using the training data, so
orientations that are more prevalent in the training set
are more likely in the model.

After learning the model, each affordancei has a set
of parameters(µi,Σi, φi) for its position and orientation
distributions. We can generate a preshape from that
affordance by sampling from the distributions in (2) and
(3) using those parameters, described in Section V-A.

IV. T HE GENERATIVE MODEL

In the previous section, we described how an affor-
dance is represented as a collection of three parametric
distributions. The topic model presented in this section
describes the statistical relationship between the param-
eters for a set ofA affordances and the observed training
data.

The model is illustrated in Figure 2. The nodes of
the graph represent random variables, with the shaded
nodes denoting the observed variables. Unshaded nodes
are latent variables that must be inferred from the data.
Rectangles around variables denote replication, where
the number of times is shown in the bottom right corner.

Our model assigns one affordance to each data ob-
servation; after all observations have been assigned, we
compute the values of the affordances’ parameters. We
take a Bayesian approach to estimate these parameters
because we can quantify our uncertainty about their
values by using suitable prior distributions. Moreover,
we can incorporate new data to improve our posterior
estimates.

We organize the training data setD = (b,x,w)
into M sets of object grasp features, where setm

hasNm examples. Datumi of object m is the tuple
(bmi, xmi, wmi, ), which consists of a visual feature

3



Σ

b

z

N
m

M

θ

x w

φ
A

ψ u µ

Fig. 2. The graphical model described in Section IV. Circlesindicate
random variables, shading indicates an observed variable,otherwise
they are latent. A rectangle around nodes represents replication; the
number of times written in the bottom right corner. The edgesbetween
nodes indicates a conditional probability distribution described in the
text.

covariance matrix, the position, and the orientation of
the hand, respectively. The variablez represents the
assignment of an affordance to the observed preshape.
The variableθ describes a multinomial distribution over
the shared set of affordances for an object; in effect, it
defines a mixture model over affordances and describes
the likelihood of an object using a particular affordance.
Note that by using a multinomial distribution over the
affordances, independent samples from the model for the
same object can result in a different affordance being
selected.

Using this model, the generative process for data point
i is given below:

θ |α ∼ Dirichlet(α)

zi | θ ∼ Multinomial(θ)

bi | zi = j ∼ Inv-Wishartuj
(ψj)

wi | zi = j ∼ Multinomial(φj)

xi | zi = j ∼ N (µj ,Σj),

(4)

whereX ∼ D means that random variableX is sampled
from distributionD. The first line of (4) samplesθ from a
symmetric,A-dimensional Dirichlet prior with parameter
α. In the second line, the affordance assignmentzi for
this datum is sampled according toθ. The preshape
componentsbi, wi, andxi are sampled according to the
distributions (1), (3), and (2), described in Section III,
using the parameters of affordancezi.

We assume independent, symmetric Dirichlet priors
over θ and φ, with hyperparametersα and β, respec-
tively. The second moment covariance prior is inverse-
Wishart with scaleΨ and u0 degrees of freedom. The
covariance matrices for grasp position,Σ, also have
an inverse-Wishart prior with scaleΞ and ν degrees
of freedom [12]. The grasp position mean is given a
uniform prior.

For notational convenience, letΩ correspond to the pa-
rameters of these priors, the so-called hyperparameters,
and letC = (ψ, u, φ, µ,Σ) correspond to the parameters
of the component distributions for each affordance.

V. PARAMETER ESTIMATION IN THE MODEL

The inference problem is to compute the posterior
distribution of the latent variables given example grasp
points, using Bayes’ rule:

p(θ, z,C | D,Ω) =
p(D | θ, z,C,Ω)p(θ, z,C |Ω)

p(D |Ω)
, (5)

which is intractable, although we can estimate it using
Gibbs sampling. Gibbs sampling is used when it is im-
possible to sample from a distribution directly. Instead,
we sample from each dimension of the distribution con-
ditioned on the current state of the rest of the dimensions.
In this case, the distribution we are interested in is the
posterior assignment of affordances to data points.

Given our data setD, we use Gibbs sampling to
estimate the affordance assignmentsz, which we use to
provide point estimates for the other parametersθ and
C.

In the following, let z−mi denote the set of all
affordance assignments excludingzmi, and let b−mi,
x−mi, andw−mi be defined similarly.

Using the conditional independence relationships
shown in the graph of Figure 2, the posterior distribution
over affordance assignments can be written as

p(zmi | z−mi,D) ∝ p(zmi | z−mi, om)

× p(bmi | z,b−mi)p(xmi | z,x−mi)

× p(wmi | z,w−mi). (6)

The likelihoods of the conditional affordance assign-
ments and hand orientation assignments are multino-
mials, and have been derived from standard Dirichlet
integrals:

p(zmi = j|z−mi, om = l) =
nO

jl + α
∑

j′ n
O
jl′ +Aα

(7)
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p(wmi = k|zmi = j, z−mi,w−mi) =

nW
kj + β

∑

j′ n
W
kj′ +Qβ

, (8)

where nO
jl is the number of times affordancej has

been assigned to objectl, and A is the number of
shared affordances. Likewise,nW

kj is the number of times
orientation featurek has been assigned to featurej,
and Q is the number of canonical grasp orientations.
Since the assignment of affordances to observations is a
statistical process, ifA is large there may be affordances
that are not assigned to any observations. The expected
number of affordances used is a function of the number
of observations andα.

At each iteration of the sampling algorithm, given
the current assignment of data points to affordances, the
posterior distribution over the position of the grasp,xmi,
is a multivariate Student-t distribution with(nA

j +ν−2)
degrees of freedom, wherenA

j is the total number
of features assigned to affordancej. This can be ap-
proximated with the following moment-matched normal
distribution [12]:

p(xmi | zmi = j, z−mi,x−mi) ≈ N (xmi | µ̂j , Σ̂j), (9)

where

µ̂j =
1

nA
j

M
∑

m=1

∑

k|zmk=j

xmk

δj =
nA

j + 1

nA
j (nA

j + ν − 4)

Σ̂j = δj



Ξ +

M
∑

m=1

∑

k|zmk=j

(xmk − µ̂j)(xmk − µ̂j)
T



 .

The conditional distribution for a visual feature co-
variance is given as

p(bmi | zmi = j, z−mi,b−mi) = Inv-Wishartûj
(ψ̂j)

(10)
with

ûj = u0 + nA
j

ψ̂j =
1

nA
j



Ψ0 +

M
∑

m=1

∑

k|zmk=j

bmk



 .
(11)

At each iteration of the Gibbs sampler, we use (7) –
(10) to compute (6). A single data point update can
be computed inO(A), and each sample output by the
sampler requires computing this assignment for every
training data point. Thus the total time to compute a
sample given a training set withM objects andN grasps
per object isO(MNA). The sampler must be run for a

number of iterations before samples can be considered
independent. We typically compute on the order of two
hundred “burn-in” iterations before accepting a sample.

A. Generating preshapes for new objects

We are interested in generating candidate preshapes
for a novel object given its visual features. LetΘ̂(s)

correspond to the model parameters estimated from
samples. The generative process for new grasps given
visual featurebt is:

zt | bt, Θ̂
(s) ∼ p(z | bt, Θ̂

(s))

wt | zt = j, Θ̂(s) ∼ Multinomial(φ̂
(s)
j )

xt | zt = j, Θ̂(s) ∼ N (µ̂
(s)
j , Σ̂

(s)
j ).

(12)

With a set of samples from the posterior distribution
p(z | D), statistics that are independent of the content of
individual affordances can be computed by integrating
over the full set of samples. For any single sampleΘ̂(s)

we can estimateθ and C using the affordance assign-
ments inz(s) as described in Section V using (7) – (10).
These correspond to predictive distributions over new
affordances and hand positions conditioned onD and
z. Note that these estimates cannot be combined across
samples, since there is no guaranteed correspondence
between affordances among the set of samples.

The first distribution in (12) can be computed as

p(z = i | bt, Θ̂
(s)) ∝ p(bt | z = i, Θ̂(s))p(z = i | Θ̂(s))

≈ Inv-Wishart
û
(s)
i

(ψ̂
(s)
i ), (13)

where we assume thatp(z = i | Θ̂) is uniform.
By following the generative process in (12), given

a visual feature, we can produce a set of candidate
preshapes. In this work, we assume a fixed configuration
of the fingers in the hand, such that they form an
opposing grasp. One could easy augment the affordance
representation to take into account different finger con-
figurations.

VI. EXPERIMENTAL RESULTS

To test the ability of the model to represent the
grasp affordances demonstrated in the training set and
generate new pre-grasps, we trained the model using a
set of household objects. Because there is no notion
of orientation of the object in the model, the same
object presented in a different orientation (flat, standing
up, etc.) is treated as a separate object. The notation
object-N refers to the presentation ofobject in a
different orientation. There are examples in the literature
of how this assumption can be relaxed by incorporating
the notion of rigid body transformations into the model
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babo babo−1 blocks

blocks−1 blocks−2 boy

coke_can comet green_can

jelly lawn_box oxyclean

oxyclean−2 purex purex−1

red_coffee tp vase

whisky−2

Fig. 3. This picture shows the objects in the training set. The red
oval corresponds to the covariance matrix that was used as a visual
feature for grasps with the object.

itself [15]. We chose a setO of 31 object presentations
for training and testing.

For training,Ntrain = 19 objects were chosen ran-
domly from O, and grasps were demonstrated using
teleoperation. This object set is shown in Figure 3. Each
object was presented to Dexter in the middle of the
workspace, and the right arm was used to perform all
grasps, as shown in Figure 1. While the model specif-
ically generated preshapes for Dexter’s right arm, by
applying a known affine transformation to the preshape,
they can be used by the left arm. The set of canonical
grasp orientations was computed using the training set,

babo−2 black_drano blocks−3

jelly−1 lawn_box−1 lawn_box−2

oxyclean−1 pipe polish

purex−2 whisky whisky−1

Fig. 4. This picture shows the objects as they were presentedfor
generating grasps.The red oval corresponds to the covariance matrix
that was computed from the average second moments of the segmented
blob in the left and right cameras.

and a set ofQ = 6 were chosen. Note that in these
experiments, symmetric grasps were not used, that is,
the demonstrator did not perform a grasp at the same
location using a different hand orientation.

For learning the parameters of the model,A = 10
shared grasp affordances were used. The Gibbs sampler
ran for 200 iterations of burn-in, after which the next
sample was stored. Using the single sample,Ntest =
12 objects were presented, shown in Figure 4, and the
model generated 6 candidate preshapes for each object.
The robot achieved each preshape configuration and then
attempted to grasp the object. To perform the grasp, the
robot simply flexed its fingers until a sufficient force had
been applied to the object. In these experiments a grasp
was judged successful if the robot was still holding onto
the object after moving the hand 10 cm vertically.

As an example of the types of grasps generated by the
model, Figure 5 shows a composite image of six grasps
generated for theblocks-3 object.

A. The näıve model

To analyze the performance of the model, we created
a naı̈ve model which also generated grasps using visual
features. This model performed visual processing to
estimate the width and height of the object, and then
generated grasps by selecting points on a spherical
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Fig. 5. A composite image showing six candidate grasp positions for
the blocks-3 object.
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Fig. 6. This graph shows the result of using the trained graspmodel
on a set of test objects. Each bar measures the number of successful
grasps for the labeled object. The blue bars are for the naı̈ve model,
and the red for the shared affordance model.

hemisphere centered at the object’s centroid. The radius
of the hemisphere was equal to half the length of the
longest dimension of the object. The orientation of the
hand was chosen such that the palm was normal to a
ray connecting it to the object’s centroid, and a uniform
random rotation about this ray was chosen. The three
fingers of the hand were spread equidistant from each
other. The robot then attempted to grasp the object
starting from six different locations, and grasp success
was judged as before.

The results of performing these grasps are shown in
Figure 6, where blue and red bars correspond to the

naı̈ve and our model, respectively. Overall, the naı̈ve
model was successful 43 out of 72 total grasp attempts.
In comparison, using the affordance model, 53 out of
72 attempts were successful; a statistically significant
improvement(p < 0.01).

In most cases, our model outperformed the naı̈ve
approach, including thebabo-2 object, which the naı̈ve
model was unable to grasp. However, our model did have
difficulty with the jelly-1 and whisky-1 objects.
In both cases, although the generated preshapes were
located above the object with a suitable orientation, they
were too high for a successful grasp. This is a result
of the fact that the model is in effect summarizing
the preshapes provided in the demonstration. For novel
objects, the model finds the affordance with the most
similar appearance, but the hand positions suggested
by that affordance may not adequately fit the actual
geometries of the object. To improve performance, one
could incorporate a grasp controller to perform the grasp
once the preshape was achieved [16].

Since we use a statistical model, the candidate pre-
shapes generated by an affordance may vary in quality,
and in these experiments, each candidate preshape was
attempted regardless of its quality. However, as the
amount of training data increases, the expected variance
of the affordance distributions will decrease, potentially
improving performance. In a real-world scenario the
model could be used interactively, with the teleoperator
providing additional training data to improve the quality
of the robot’s hypotheses.

Additionally, the proposed method could be improved
by performing a secondary analysis of the candidate pre-
grasps. For example, incorporating additional informa-
tion about the object geometry into candidate selection
to choose the closest, non-colliding preshape.

The success rate of the model is also affected by the
number of shared affordances. In the current implemen-
tation we estimateA based on the number of objects
presented, although we do not know a priori the number
of shared affordances represented in the training data. If
A is too small, the covariances for the position distribu-
tion of the affordances will be large, so it may require
sampling a number of preshapes before finding one that
is close enough for a successful grasp. Nonparametric
Bayesian approaches can be used to estimate the number
of affordances from the data itself [17].

In order to see how affordances were shared among
different objects, we computed Table I using a single
sample of the posterior to show the composition of each
affordance. Each column corresponds to an affordance,
and each row denotes the training set of objects. An “x”
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Affordance

1 2 3 4 5 6 7 8 9 10

babo x x
babo-1 x
blocks x x
blocks-1 x x
blocks-2 x
boy x
coke_can x x
comet x x
green_can x x
jelly x x
lawn_box x
oxyclean x x
oxyclean-2 x
purex x x
purex-1 x
red_coffee x x x
tp x x
vase x
whisky-2 x

TABLE I
EACH “ X” DENOTES A GRASP ON THE OBJECT IN THE ROW WAS

USED BY THE AFFORDANCE DENOTED IN THE COLUMN.

indicates that some training grasp from this object was
used to determine the parameters of the affordance in
that column. Columns with multiple “x”s indicate an
affordance that used training examples from multiple
objects. In this sample, it can be seen that 7 out of 10
affordances incorporate training examples from multiple
objects. Once the sampler has been run for enough
iterations, we can expect subsequent samplesΘ̂(s) to
contain very similar assignments. Different runs of the
sampler produce similar groupings of observations, al-
though the actual assignments to particular affordances
will differ (e.g., the assignment found in affordance 1 in
this sample may be the assignment of affordance 5 in
another sample).

B. More Complex Objects

Using this visual feature model, one can represent a
single object with multiple second moment covariances:
the model will generate grasps for each covariance,
and they must then be transformed into the appropriate
frame. Since the model has no notion of the geometry
of the object beyond centroid and second moment,
secondary processing should be used to filter low-quality
preshapes. As an example, we presented a mallet that
was segmented into two blobs, as shown in Figure 7.

Using the model learned in the previous section, we
generated preshapes for each of the two blobs and
manually filtered the candidates that collided with the
mallet. For example, the model generated preshapes for

Fig. 7. This figure shows how the mallet can be segmented into
multiple blobs, and each blob can be used to generate grasp positions
independently.

Fig. 8. This figure shows a composite image of some of the preshapes
generated by the model learned in Section VI.

side grasps of the handle that would collide with the head
of the mallet. Figure 8 shows some feasible candidate
preshapes suggested by the model.

VII. C ONCLUSIONS

We have presented a hierarchical, statistical model
for representing grasp preshapes among a collection of
objects, using a latent topic model. The model provides a
way of summarizing the data provided by a teleoperator
in a way that can be applied to new objects. We showed
that the model can generate successful grasp preshapes
on novel objects and outperforms a naı̈ve strategy.

For future work, different visual features could be used
to learn affordances specific to smaller scale features
of objects. As mentioned above, the model can also
be improved by incorporating rigid-body transformations
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into the representation of objects. Ideally, a model of
grasp affordances is learned for a canonical orientation
of an object, and preshapes from that affordance are
transformed to match the orientation of the object as it is
presented. Additionally, the model can be combined with
higher-level logic that selects grasp candidates based on
task constraints.
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