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Abstract— We present a long-term intrinsically motivated
structure learning method for modeling transition dynamics
during controlled interactions between a robot and semi-
permanent structures in the world. These structures serve
as the basis for a number of possible future tasks defined
as Markov Decision Processes (MDPs). We apply a structure
learning technique to a multimodal affordance representation
that yields a population of forward models for use in planning.
We evaluate the approach using experiments on a bimanual
mobile manipulator (uBot-6) that show the performance of
model acquisition as the number of transition actions increases.

I. INTRODUCTION

This paper adopts an affordance representation that is
lightweight (unlike Object—Action Complexes (OACs) [1])
and thus, better serves planners that need to roll out a number
of these forward models during planning. In fact, only
essential Markovian components concerning information re-
garding states, actions, and transition dynamics, s, a — s’ are
encoded, allowing reusability for a large number of task for-
mulated as MDPs. The main contribution of this paper is the
presentation of an intrinsically motivated structure learning
approach that builds complete action-related representations
of objects using multimodal percepts. The resulted is called
an Aspect Transition Graph (ATG) model. Previous planning
architectures using hand built versions of these models have
been successful, however, this paper contributes a structure
learning approach to acquiring them autonomously.

Approach: We present the first autonomously learned
ATG representation with continuously parametrized action
edges in the literature. These representations can be used to
serve as forward models in belief-space planning infrastruc-
ture on real robot systems [2]. A number of studies have
integrated ATG affordance representations into the model
base as a fundamental attribute in the model-referenced
belief-space planning architecture but do not encode funda-
mental system uncertainties nor inherently encode transition
dynamics learned by the robot and therefore are not robust
to unexpected outcome [3-5]. ATG encode affordances in a
graphical structure defined as a directed multi-graph G =
(S,.A) where S denotes a set of aspect nodes connected by
action edges A. Sensory information is integrated into the
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aspect node, a state representation defined as a geometric
constellation of features derived from multiple sensor modal-
ities. Each parameterized action a € A uses a learned search
distribution for motor references that reliably transition be-
tween aspects. References are defined to be (multivariate)
Gaussian distributions A/(y, 33) in Cartesian space describing
the areas in object frame where the robot has successfully
detected a target perceptual reference from this initial state
in the past. Each edge in the ATG is a closed-loop controller
¢|2 that combines potential functions (¢ € ®) with sensory
(o C X)) and motor resources (7 C T) [5, 6].

Affordances of a given object are determined by exploring
actions that cause a transition in aspect space. We select
actions to learn affordances either by encouraging coverage
through a Latin Hypercube Space (LHS) or by intrinsic
motivation. The key insight for using an intrinsic reward like
[7] with value iteration is that it encourages the consump-
tion of reward through actions, promoting the selection of
actions that produce a high differential variance. As these
distributions converge, intrinsic reward diminishes, hence
encouraging other action parameters contributing to other
transitions to be selected. The overall algorithm is as follows,

Algorithm 1 Multimodal Structure Learning

1: f+ NIL

3 a, p +Select params by LHS or arg max, f(s,a, s)
4 Do a, p and obtain experience (s, a, p, s’)

5 r(s.a(p), ) < abs([ISll2 — [(Sk1)ll2)

6: Update value f(s,a,s’) with reward (s, a(p), s’)

7: Update N 4, with current action params a(p)

8: while f(s,a,s’) >¢:Vs,a,s

II. EXPERIMENTS

Methodology: Experiments are done on a dynamic simu-
lation of the uBot-6 platform, a 13 DOF, toddler-sized, dy-
namically balancing, mobile manipulator [8] equipped with
an Asus Xtion Pro Live RGB-D camera and two ATI Mini45
Force/Torque sensors one in each hand. Performing a visual
observation creates a feature list consisting of maximum like-
lihood Cartesian features derived from a Kalman filter that
summarizes the history of observations to this point in terms
of a mean and spatial covariance. Primitive tactile features
consist of the contact force f € R3, from which the sum
of squared contact forces between the left (L) and right (R)
hands, > ,_; fi f; and sum of squared contact moments
Sier r(ri x F)T((r; x f;) are computed at the centroid
of the ypair of contacts measured resulting in bimanual grasp
configurations where the squared force and moment residuals


https://people.cs.umass.edu/~jayming/ICDL-direct.html

| Al | P-VALUE PROPOSED RAND+MEMORIZE
50 0.0034 1.4934 +£0.0732 1.7551 £ 0.2097
100 0.0063 0.7598 £+ 0.1477 1.0919 £+ 0.2929
150 0.0068 0.4242 £+ 0.1062 0.7666 £ 0.2876
200 0.0125 0.2701 £ 0.0630 0.5797 £ 0.3345
250 0.0071 0.2180 £ 0.0648 0.5474 £ 0.3435
300 0.0153 0.1574 £ 0.0409 0.4626 £ 0.3511
350 0.0217 0.1447 £+ 0.0258 0.4388 £ 0.3511
400 0.0254 0.1251 +0.0187 0.4197 £ 0.3608
450 0.0251 0.1219 +£0.0177 0.4071 £ 0.3511
500 0.0323 0.1112 4 0.0060 0.3865 £ 0.3469

TABLE I: Model error comparison between the proposed structure learning
approach and a base-line approach.

are minimized simultaneously. Control actions are executed
by the robot to establish new sensor geometries and reveal
new aspects causing probabilistic transitions to new aspect
nodes. We implement both GRASP and a locomotive ORBIT
control program. Since our approach makes no assumption
regarding the underlying object and only concerns the aspects
that are afforded, it can theoretically be applied to any object,
however, we use a simple object geometry whose ATG can
be evaluated. In a total of over 250 hours of robot simulation,
ARcube objects, 29 cm cubes with a single ARtag on each
face, were used.

Results: The first experiment (containing five trials over
150 hours of simulation) compares the proposed approach
to a baseline in which the robot randomly explores control
parameters, observes the scene, and memorizes its effects in
terms of aspect transitions, against a ground truth ORBIT
model. Such a method is guaranteed to converge to a
complete affordance model given sufficient time and serves
as a valid contender for comparisons. Error (in radians) is
computed by the absolute difference between the learned
model and the ground truth for the means of the distribution
along all transition edges. Table I lists the average error for
both the proposed and the random memorization approaches
after a specific number of actions. In all cases, the proposed
method achieves lower errors and in many of these cases,
the difference is statistically significant (p < 0.05). It is also
evident that the proposed approach is capable of acquiring
more accurate affordance representations faster and more
reliably (with significantly lower standard deviation). The
second experiment (consisting of five trials over 100 hours)
aims to inspect the result when additional sensor modalities
(vision and touch) and actions (ORBIT and GRASP) are
introduced, which resulted in slightly slower convergence,
yet continues to discover all the transitions in the learned
ATG. As the the number of transitions discovered in the
model increases, the likelihood of novelty diminishes—this
is captured in the decreasing values in the model. Structure
learning with the extended action set requires 300-400
actions to produce a complete model, a magnitude similar
to other approaches [9].

Conclusion: This manuscript presents an intrinsically mo-
tivated structure learning approach to learn semi-permanent
Markovian state representations of structures that are
reusable in future tasks. The affordance representations
learned here serve as forward models in belief-space ob-
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Fig. 1: Average () value and the number of transitions discovered in
the model using the proposed approach. The dotted lines correspond to
average model value and solid lines describe the number of transitions in
the affordance model (Best viewed in color).

ject identification architectures [2] by predicting how state
distributions change in response to interaction. Despite suc-
cess in the past using hand-crafted models of this type,
the methods presented in this paper allows us to acquire
them autonomously and encodes parameters robust to robot
uncertainties derived from the properties of the system and
its interaction with the word that would otherwise be difficult
to precisely hand define. Structure learning allows robots to
build models themselves without supervision and promotes
informed action selection, exploiting known structure and
promoting a sense of discovery. Results demonstrate the
acquisition of models that are significantly better than ap-
proaches that solely select random actions to learn from.
We believe that autonomously learning affordance represen-
tations as forward models with more complex actions and
modalities allows for a richer set of future solvable tasks
and perhaps reduces the complexity in model-referenced
planning, thus reducing planning time and rollouts necessary.
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