Self-Supervised Deep Visuomotor Learning from Motor Unit Feedback

Jay Ming Wong*, Takeshi Takahashi*, Roderic A. Grupen
Laboratory for Perceptual Robotics
College of Information and Computer Sciences, University of Massachusetts Amherst
{jayming, ttakahas, grupen}@cs .umass.edu

Abstract—Despite recent success in a number of domains with
deep learning, expensive data collection and the need for large
datasets becomes a major drawback for deep learning with real
robotic platforms. As a result, many of the successful work in
deep learning has been limited to domains where large datasets
are readily available or easily collected. To address this issue,
we leverage closed-loop controllers to reduce the dimensionality
of output neurons and introduce a method of self-supervision
derived from a dynamical systems approach that captures the
robot’s evaluation of its own interactions with the world. We
focus on the accurate prediction of controller dynamics (or motor
unit status) given visual observation and demonstrate that a real
robot platform, the uBot-6, can quickly acquire visuomotor skills
that are general enough to be applied to a set of novel objects.

I. INTRODUCTION

With the recent resurgence of neural networks under deep
learning, a number of great successes have been shown in
vision and other difficult tasks. For instance, a remarkable
results with deep learning have been demonstrated in the
ImageNet competition [1], Atari [2, 3], and Go [4] gameplay.
Yet, despite surprising success in many of these applications,
deep learning is far from the norm in robotics. Concerns arise
when these methods require many thousands of parameters to
be set and are surprisingly easy to fool [5, 6]. Furthermore, a
prerequisite for deep learning architectures is the requirement
of large amounts of training data—upwards millions of train-
ing examples. In fact, it is particularly hard for robot systems
to collect sufficiently large sets of data. As a result, some
approaches rely on pretrained architectures to initialize the
network using relatively good weights, with many leveraging
the AlexNet result [7, &].

Deep reinforcement learning via Deep Q Networks (DQNs)
[2], leveraging convolutional architectures for Q-value func-
tion approximation with continuous observation spaces, have
recently been introduced to extend ideas dating back to two
decades of research [9, 10]. An actor-critic approach with
“soft” target updates has been shown to extend these initial
DQNs for continuous action spaces [1], however, despite its
performance being competitive with optimal controllers, their
algorithm has only been tested in simulation and have yet been
demonstrated on a real physical system.

Much of the success in deep learning relating to robotics and
control seem limited with demonstrations mainly in gameplay

*These authors contributed equally.

domains (e.g. Torcs, Atari, and Go), where physical control is
not really considered—even fewer have even looked into ap-
plying such methods into real physical and dynamical systems.
DQNs have been applied to some robotics applications, how-
ever, are limited to precisely defined domains for exploration
in parameter space on real robot platforms [12]. Unfortunately,
it is not the case that networks learned in simulation can
be easily transferable to actual hardware and real world
observations despite millions of training steps in over hundreds
of hours [13]. Because of this, systems must collect and
learn from real world experiences. A multi-staged architecture
relying on exhaustive search over candidate rectangles in the
scene for detection and execution of grasps have been shown
[14] to avoid hand-designing features for grasping which have
been popular approaches in the past [15, 16]. Meanwhile,
Levine et al. showed that deep reinforcement architectures
held promise by learning a number of manipulation tasks
that require close coordination between vision and control
but required optimal control theory to pretrain a network
with motor torque outputs [12]. Extensions using deep spatial
autoencoders with architectures like this allows for possibility
in solving a wider range of tasks where suitable representations
are not known a priori [17].

As many of these methods rely heavily on pretraining and
unsupervised methods, we provide an approach that moves
away from such necessities. A similar motivation by Pinto
and Gupta has been discussed, where they obtained hundreds
of hours of robot labeled grasp data for training leveraging a
heuristic-based labeling metric [18]. Recent work by Levine
et al. incorporated a similar predefined metric (gripper status
and an image subtraction test) for self-supervision to train a
network built to predict grasp success probability, driven by
task-space motor commands [19]. Our approach differs in the
way that self-supervision is derived from a dynamical systems
approach and captures the robot’s evaluation of its own actions
through closed-loop control interactions with the environment.
In this case, the output of our network corresponds to the
robot’s prediction of the status of its motor units.

This paper provides three main contributions in deep learn-
ing for robotics applications:

1) We propose a novel approach to simplify deep visuomotor

skill acquisition using closed-loop motor units (or con-
trollers) as output neurons (different from motor torque

Fig. 1: Self-supervision: uBot-6 self-labels its own grasp experiences for
training using closed-loop controller (motor unit) feedback.

outputs in the literature).

2) We show that the trajectory information of controllers
alone provides a method for self-supervision in which
robots label their own experiences for training.

3) And lastly, we discuss the performance using varying
network architectures that implement these motor units.

II. TECHNICAL APPROACH

This paper leverages closed-loop motor units to reduce the
dimensionality of the output layer of a deep convolutional
network, whose purpose is to predict controller convergence
or quiescence. By deriving the controller state representation
from a dynamical system model of the interaction of the
robot with the world, accurate prediction of controller dynam-
ics suggests whether particular actions are afforded by the
visual observation of the world. Executing a controller that
is predicted to converge given some observation describes a
visuomotor policy that performs these afforded actions. Such
an approach learns visuomotor policies and skills along with
perceptual representation.

A. Closed-loop Controller Dynamics

In this paper we employ a Control Basis formulation of
closed-loop controllers. These controllers ¢|7, consist of a
combination of potential functions (¢ € &), sensory inputs
(c C), and motor resources (r C 7) [20, 21]. Such
controllers achieve their objective by following gradients in
the potential function ¢(o) with respect to changes in the
value of the motor variables Ou., described by the error
Jacobian J = O¢(c)/Ou,. References to low-level motor
units are computed as Au, = —J#$(c), where J# is the
pseudoinverse of J.

The interaction between the embodied system and the
environment is modeled as a dynamical system, allowing
the robot to evaluate the status of its actions as a state
describing a time varying control system. The time history or
trajectory of dynamics (¢,) as a result of interactions with the
environment by executing controllers have been shown to have
predictive capability regarding the state of the environment
[22]. The state description ~* at time ¢, in the context of

x4

»,
: ¥ right hand IEﬁkMdz“/\’;
o gt Aan I

Sensor modalities present in the uBot-6: @ :
1) Asus Xtion Pro Live RGB-D camera f

r
»
[

{Z Wi
Z yﬂ

right tilt

! — e
‘\ right twist x 1 }he.'zd tilt left twist
y v right pan . left pan Y
'f/, [{ e Tx \Lr Fizhtelb
Lo == 5 s " ¥ P =1 rightelbow
Al e yI‘I y
rightelbow =" i f v ?

"L.—.t}

~ -’—Ildiw}ieel
3

right wileefxi‘—zb' -

¥ base

Fig. 2: uBot-6 robot platform: a 13 DOF, toddler-sized, dynamically
balancing, humanoid mobile manipulator

this paper, is derived directly from the dynamics (¢, qB) of the
controller such that,

UNDEFINED : ¢ has undefined reference
2 ([0 = TRANSIENT : |<;.5| > €
T CONVERGED : |¢| < € and ¢ reaches g
QUIESCENT : |@| < € and ¢ fails to reach g

where g is the reference control goal.

The robot performs actions in the form of executing con-
trol programs defined as providing some goal reference to
these closed-loop controllers. The purpose of this work to
implement a system that predicts controller convergence or
quiescence—an implication of the result forms a visuomotor
policy indicating when visual stimuli in the scene affords the
given action. Because this approach leverages the controller
dynamics in defining state, the output of the network is
reduced to an extremely small discrete space—as a result, less
training data is required allowing real robot platforms to learn
visuomotor policies with relatively small networks and short
data collection and training times.

B. uBot-6 Mobile Manipulator

The uBot-6 robot platform (shown in Figure 1 and Figure 2)
is a 13 DOF, toddler-sized, dynamically balancing, humanoid
mobile manipulator equipped with an Asus Xtion Pro Live
RGB-D camera, designed and built at the Laboratory for
Perceptual Robotics [23]. The robot leverages the use of
ROS (Robot Operating System) for a middleware, a publish-
subscribe and message passing architecture [24].

Actions in the context of this paper corresponds to the
execution of control programs. Primitive actions are defined
basis controllers with some reference goal. In particular, the

Flg 3: Successful grasps: Selected grasp examples consmtmg of RGB (left) and depth (right) that resulted in grasp convergence.

Flg 4: Failed grasps: Selected grasp examples cons1stmg of RGB (left) and depth (right) that resulted in grasp quiescence or failure.

GRASP control program that we demonstrate in this paper
implements a particular target set-point in the form,

8

g= , M

<
IS

‘1L R

where the control goal g is given by vectors describing the
Cartesian positions [z, y, 2], to reach to for each hand h (with
L and R denoting the left and right hands) and a particular
desired compression magnitude M that the robot uses as a
reference to track. This GRASP control program is a sequential
composition of two primitives controllers described by control
programs REACH and COMPRESS. The former is an endpoint
position controller that drives the positions of the end effectors
to some Cartesian position defined by [z, y, z];, and the latter is
a compressive force tracking controller that aims to track some
particular compression magnitude M. The robot evaluates the
compressive force by tracking some set-point position error
during the COMPRESS action. If the compress action converges
to the Cartesian set-points that are analogous to a perceived
force, then the grasping controller quiesces, unable to track
the compression magnitude M. The COMPRESS action that
leverages perceived set-point errors as a pseudo-force is further
described in [25].

In our demonstrations, a primitive grasp is defined by a
reflexive action given by some fixed goal parameters describ-
ing the target set-points for the controller ¢ggasp. We will
elaborate further on why this particular form of action is
leveraged in the discussion section.

C. Self-Supervision via Controller State

We provide an approach in which robots can autonomously
acquire large sets of training data from experiences—this relies

on the fact that the robot can reliably self-label its training
instances during the data collection session by querying the
status of its controllers. All data collection for training was
performed on the real robot system.

A data collection node was integrated with the ROS ar-
chitecture allowing for the capture of depth images at 10
Hz during each grasp trial. Generally, grasp sessions take
approximately ten seconds and as a result, the robot acquires at
least 100 training images for each grasp. In addition to saving
the depth image every 10 Hz, if at any time the state of the
controller (%) changes, an additional depth image is logged
and saved into memory.

During the grasping session, the robot was presented with a
subset of 12 training objects provided at random positions and
orientations in the scene during each trial. Additional objects
were added to the scene as distractors—they were either placed
out of reach, on top of other objects, or provided occlusion
to areas in the scene. Incorporating distractors in the scene
allows us to produce training instances that incorporated a
large amount of clutter. The data collection process consisted
of 150 grasping trials consisting of about two hours of robot
run time. For each trial, the robot performs a fixed depth grasp
action while continuously saving the depth information. The
grasp controller ¢grasp 1S executed until |¢>| < ¢ is satisfied
indicating that the controller is no longer making progress
towards its target fixed point. The controller state when this is
satisfied becomes the label that is assigned to the whole grasp
session—each of the saved images inherits this label. Some
of these grasp trials are illustrated in Figure 3 and Figure 4 in
which the RGB and depth images are illustrated for successful
grasps (labeled by 7 (dgrasp) = 1 or converged) and failed
grasp examples (labeled by 77 (¢grase) = 2 or quiesced).

120

Relu

softmax

dense 2

dense

stride of 2

stride of 4
1

stride of 2 32 056

Fig. 5: Schematic of the network architecture consisting of two convolutional layers followed by a dense linear rectified layer which is densely connected to
a softmax output layer. The network’s input is of size 160 x 120 and the output corresponds to predictions regarding the convergence or quiescence of the

controller ¢Grasp-

Fig. 6: Training set (left) and test set (right). Training set consists of twelve varying objects with a number of distractors such as blocks, bats, and toys.
Two of the twelve objects were from the YCB grasping dataset. The test set consisted of ten novel objects with half being physically not graspable given the

properties of the object and the robot.

Each grasping trial, when completed, calls a homing procedure
to reposture the robot.

In total, uBot-6 self-labeled 150 grasp experiences, consist-
ing of 17,714 depth images, which is then used as input to a
deep convolutional neural network. About a half of the grasp
experiences are CONVERGED examples. A fraction of the total
image set was used to train the network. As these images
contribute to a time history during the grasp, many of these
images are similar. To prevent overfitting, we used 4556 depth
images, about one fourth of the overall set of collected data.

D. Network Architecture

The depth image obtained by the Asus Xtion Pro Live RGB-
D camera collected and self-labeled by the robot is subsampled
into an input of size 160 x 120. At the first convolutional
layer, 16 filters of size 8 x 8 with a stride of four is applied
to the input image at the first convolutional layer. The second
layer convolves the resulting 38 x 29 x 16 output with 32
filters of size 4 x 4 with a stride of two. Another 32 filters
of size 4 x 4 convolves this 18 x 13 x 32 output using a
stride of two at the third convolutional layer. This is then
fully connected to 256 neurons with Rectified Linear Units
(ReLu) as a nonlinear activation function. Lastly, a softmax
is applied connecting to the output layer consisting of two

neurons for each controller in the set ®. The purpose of
each of these two neurons is to predict the controller state
~t(¢|2) at the time ¢ = T where |¢| < € is satisfied and the
controller terminates by either convergence or quiescence. In
the case of this paper, we consider solely a grasp controller
OGrase € P. A pictorial image of the network architecture
used in this paper is illustrated in Figure 5. We investigated
network architectures with the different number of convolu-
tional layers. The comparisons are shown in Figure 9. The
difference in the performance between the network with five
convolutional layers and the network with three convolutional
layers is minimal therefore we adopted three convolutional
layers described above as it requires less computation than
that of the 5-convolutional layers network.

Learning with this network employs the categorical cross-
entropy between network predictions p; ; and training targets
t;,; describing the network’s loss function,

1 N S
N DD tijlog(piy).
i

where ¢ is a batch number, N is the number of batches, j is
a controller state, and S is the number of terminal controller
states (|¢| < €). We use RMSProp [26] to update the weights
of the network with learning rate a = 0.00001 and decay

E:

at.[- i '-ii’ S O d B i ‘Mﬁ_...‘

Flg 7: Correct Prediction: Selected correct prediction examples consisting of RGB (left) and depth (right) that were taken before the grasp action started.
The images in the first and the second rows illustrates correct convergence predictions while those in the third and fourth rows depicts the correct quiescence

predictions.

? _m --

Fig. 8: Incorrect Prediction: Selected incorrect prediction examples con-
sisting of RGB (left) and depth (right) that were taken before the grasp
action started. The images in the first row depict the case where the robot has
predicted a convergent grasp, but in reality resulted in quiescence. The second
row shows the case where the robot predicted a quiesced grasp outcome, but
the grasp resulted in convergence. The bottom rightmost panel illustrates a
cardboard box that is tilted with respect to the horizontal plane.

factor p = 0.99. This particular convolutional neural network
was implemented using Lasagne' and ROS.

III. EXPERIMENTAL METHODOLOGIES

Our experiments employ the uBot-6 mobile manipulator
with a primitive fixed target grasp controller ¢grasp. We train
the network using the set of training data that was obtained
through self-labeling via control basis state information.

The trained network was tested using ten novel objects that
were present not in the training set—five of these objects
were physically graspable by the robot, while the other five
were not graspable due to the physical properties of the
object and the robot. For instance, objects may not be tall
enough or massive enough for the fixed setpoints to afford
a bimanual grasp by the uBot-6 platform. The objects used
in this study is illustrated in Figure 6—two of the objects in
the training set were from the YCB grasp dataset [27]. These
objects were randomly presented in ten different positions and
orientations in a meter by meter workspace directly in front of
the robot. The robot performs a prediction on controller state
that the particular configuration of objects in the scene affords.
Afterwards, the robot performs the grasp action by executing
the controller to validate its prediction. A successful prediction
is one that matches the controller state after the validating
action is performed.

Thttps://github.com/Lasagne/Lasagne

100

—1 conv layer
3 conv layers
5 conv layers

o
=}

Validation Accuracy
~ o] ©
o o o
J%
‘i 4
%
{
4
2

50 100 150 200 250 300
Training epochs

a1
o

Fig. 9: Training plot: comparing the validation accuracy of three different
network architectures: network with one, three, and five convolutional layers.
The graph is illustrating the validation accuracy. The network with one
convolutional layer uses 16 filters of size 8 X 8 with a stride of four. The
network with five convolutional layers uses 16 filters of size 8 x 8 with a
stride of four in the first layer, 32 filters of size 4 X 4 with a stride of two
in the second layer, 32 filters of size 4 X 4 with a stride of two in the third
layer, 32 filters of size 2 x 2 with a stride of one in the fourth layer, and 32
filters of size 2 x 2 with a stride of one in the fifth layer. The last two layers
are the same for all the networks. (Best viewed in color).

To compensate for sensor noise, the robot performs several
predictions before deciding the controller outcome. To predict
controller convergence, 77 (¢grasp) = CONVERGED, Or quies-
cence, 7! (¢Grasp) = QUIESCENT, the robot computes,

K

Z(pn ('Yti (PGrase = 7))

i

arg max
j€{QUIESCENT, CONVERGED}

where p,, (7" (Pcrase = QUIESCENT)) and py, (7" (¢crase =
CONVERGED)) are outputs from the convolutional neural
network describing the predicted controller state, and K is the
number of predictions. In our experiments, we used K = 5.

IV. RESULTS

Correctly and incorrectly predicted trials are illustrated in
Figure 7 and Figure 8. These results are the outcome of a
network that was trained using grasp experiences over 12
random objects in addition to a number of distractors that
were also placed in the scene. The training result is shown
in Figure 9. The validation accuracy converges to about 92%
after 250 epochs. All 4556 depth images as mentioned earlier
was used in random selections during each epoch. Despite

https://github.com/Lasagne/Lasagne

the task seeming simple, it is in reality difficult to achieve
high validation accuracy with a single convolutional network.
This result is present in Figure 9 in which we compare the
accuracies between networks that leverage slightly shallower
and deeper architectures. A single convolution is insufficient in
achieving high accuracy—we hypothesize that this is because
observing solely temporal information or depth discontinuities
in the depth image (two aspects that are likely good indicators
of being able to grasp) is not enough in deciding the control
state. It is also important to note that using a cross-fire sensor
or examining point cloud information between target setpoints
may not be able to achieve higher performance either since
these techniques are unable to take into account events in
which the robot’s hands slip along the surface of the object
due to orientation or other properties that are inherent in the
identity of the object. It appears that additional convolutional
layers beyond three adds little marginal value—we observe
that an additional two layers adds less than 1% validation
accuracy.

The experiment results using novel objects consisting of
75 grasp instances by the uBot-6 platform are summarized in
Table I with an overall accuracy about 93.33% over all grasp
trials. The robot was able to predict the grasp controller state
correctly for the most of the objects despite the fact that the
robot has never seen these objects in training. Furthermore,
robot predicted the outcome perfectly for non-graspable ob-
jects. Correct prediction examples are shown in Figure 7. This
results illustrates that the neural network does not exhibit an
overfitting phenomenon despite the limited dataset size. We
assume that this is due to the reduction in output neurons by
closed-loop control motor units, resulting in the number of
weights necessary to optimize being relatively small. Further,
it may be also attributed to having a high variety of object
properties (in different shapes and sizes) in a cluttered environ-
ment in the training data set. Lastly, we suspect that learning in
clutter may help reduce the chance of overfitting since provides
more stimulus in the scene, forcing the network to not tend to
resist drawing conclusions from a small subset of features. Of
the 75 grasp experiments, the network incorrectly predicted
five trials. A selected number of these incorrect predictions
are depicted in Figure 8. Of these mispredictions, we suspect
that the network has trouble predicting state correctly when
the object is presented extremely close to the base of the
robot and is not flat on the ground (an instance of this is
illustrated in the lower right of Figure 8. However, since the
robot has a self-labeling mechanism that exploits the control
basis framework in self-labeling real world experiences, it
has the capabilities to continuously improve the prediction
performance by exhibiting more data collection trials.

V. CONCLUSION AND FUTURE WORK

In this paper, we demonstrated a preliminary study inte-
grating deep learning architectures with a control theoretic
framework for robot control, using a single closed-loop control
motor unit. Extentions to this preliminary work looks into a
larger set of motor units describing a Control Basis in which

+T'=1 1 ~T =2 [Accuracy

Trash can 5/5 4/5 90%
Brown Box 4/5 5/5 90%
Cardboard box 4/5 4/5 80%
Computer 5/5 4/5 90%
Pile of balls 5/5 5/5 100%
Small ball - 5/5 100%
Wire roll - 5/5 100%
Funnel - 5/5 100%
Umbrella - 5/5 100%
Mug & Joystick - 5/5 100%

[Total [23/25 [47/50 [93.33%]

Table I: Correct predictions of controller state: Real robot testing results on
the uBot-6 where each fraction denotes the number of correctly predicted trials
over the number of grasp attempts that resulted in a particular controller state
when |dgrasp| < €. Of the testing objects, half of them were not physically
graspable given the geometries and properties of the object and robot, this is
in;licated with a °~ In the case of this table, 77 (¢Grasp) is abbreviated as
~yt.

reinforcement learning opportunties arise. Our results indicate
that the real hardware systems can learn visuomotor skills
through control basis state predictions and gives support to
perhaps a new form of learning robot skills through employing
an extended version of this approach.

The grasping reflexive action presented in this paper draws
inspiration from some developmental phenomena. Insight from
cognitive psychology indicates that infants are inherently
encoded by primitive reflex repertoire and must learn to
encode this set of motor skills into intentional actions—as
psychologist Zelazo describes, this is one of the first functions
of the cognitive process [28]. We demonstrate this using a
relatively small convolutional neural network architecture with
output neurons mapping to control state (¢grasp in this paper)
that is derived from the asymptotic behavior of the controller.
We observe that in Figure 9 the validation accuracy with a
small number of training epochs is actually higher using a
shallower network in the particular case. It may be possible to
look into developmental strategies in which robots first learn
using shallower networks with a small set of training data
to learn coarse behavior quickly. As more data is possible,
network structure and number of training epochs may be
increased—this assumes that the information encoded in the
shallow convolutional layers are similar between varying depth
network architectures.

One of the most promising results of work dating back to
two decades regarding the Control Basis framework is that the
underlying controllers are reusable in the way that they are
defined independent of hardware—therefore, they can be used
to control arbitrary robot morphologies [20]. Extensions of this
work look into incorporating a larger number of controllers
¢|2 at the output layer allowing for the acquisition of time-
dependent visuomotor policies over many basis controllers.
This allows the visuomotor skill learned in this work to be
extended to acquire more complex behaviors—a benefit of
adopting the Control Basis framework.

This work serves as the preliminary basis for these future
extensions supporting the integration between control theoretic

architectures with deep learning for visuomotor skills. For
instance, since the network encodes the time history of all
grasping experiences, we hypothesize that continuous predic-
tion may lead to fine grained error detection. We suspect that
this is the case since each forward propagation of the depth
image corresponds to prediction whether there is stimulus in
the scene that affords a particular action or control program
(in this case ¢grasp). If at any point the performed action is
no longer afforded by the scene, it may be possible to detect
and preempt the execution of the selected control program. We
hope to explore this further in upcoming work. Other plausible
extensions look into developing a reformulation of the network
architecture to integrate DQNs with continuous action spaces
using actor-critic approaches [11], allowing controllers to act
outside fixed stationary goals or reflexive parameters. Using
approaches like this, robots may be able to not only self-
label their training instances but at the same time, learn goal
parameters that result in likely desired controller states. Lastly,
we look in a subsequent study to incorporate a deeper motor
network involving an abstraction of spinal motor units and
cerebellar motor circuitry (the Control Basis) that may be able
to accomplish force closure grasps in a much wider range of
conditions. The perceptual guidance from range data would be
more sophisticated as well and more layers may be warranted.

ACKNOWLEDGEMENTS

This material is based upon work supported under Grant
NASA-GCT-NNX12AR16A. Any opinions, findings, conclu-
sions, or recommendations expressed in this material are solely
those of the authors and do not necessarily reflect the views
of the National Aeronautics and Space Administration.

REFERENCES

[11 A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural Infor-
mation Processing Systems, F. Pereira, C. J. C. Burges, L. Bottou, and
K. Q. Weinberger, Eds., 2012.

[2] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learn-
ing,” in NIPS Deep Learning Workshop, 2013.

[3] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529-533, 2015.

[4] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanc-
tot et al., “Mastering the game of go with deep neural networks and tree
search,” Nature, vol. 529, no. 7587, pp. 484-489, 2016.

[5]1 C. Szegedy, W. Zaremba, 1. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” arXiv preprint
arXiv:1312.6199, 2013.

[6] A. Nguyen, J. Yosinski, and J. Clune, “Deep neural networks are easily
fooled: High confidence predictions for unrecognizable images,” in [EEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2015.

[7]1 M. Schwarz, H. Schulz, and S. Behnke, “Rgb-d object recognition
and pose estimation based on pre-trained convolutional neural network
features,” in IEEE International Conference on Robotics and Automation
(ICRA), 2015.

[8] E. Wilkinson and T. Takahashi, “Efficient aspect object models using
pre-trained convolutional neural networks,” in EEE-RAS 15th Interna-
tional Conference on Humanoid Robots, Nov 2015, pp. 284-289.

[9] C. J. Watkins and P. Dayan, “Q-learning,” Machine Learning, vol. 8,
no. 3-4, pp. 279-292, 1992.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

R. Sutton and A. Barto, Reinforcement learning: An introduction.
Cambridge Univ Press, 1998, vol. 116.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, 2015.

S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training of
deep visuomotor policies,” arXiv preprint arXiv:1504.00702, 2015.

F. Zhang, J. Leitner, M. Milford, B. Upcroft, and P. Corke, “Towards
vision-based deep reinforcement learning for robotic motion control,”
arXiv preprint arXiv:1511.03791, 2015.

I. Lenz, H. Lee, and A. Saxena, “Deep learning for detecting robotic
grasps,” The International Journal of Robotics Research, vol. 34, no.
4-5, pp. 705-724, 2015.

D. Kragic and H. I. Christensen, “Robust visual servoing,” The inter-
national journal of robotics research, vol. 22, no. 10-11, pp. 923-939,
2003.

J. Maitin-Shepard, M. Cusumano-Towner, J. Lei, and P. Abbeel, “Cloth
grasp point detection based on multiple-view geometric cues with
application to robotic towel folding,” in IEEE International Conference
on Robotics and Automation (ICRA), 2010.

C. Finn, X. Y. Tan, Y. Duan, T. Darrell, S. Levine, and P. Abbeel,
“Deep spatial autoencoders for visuomotor learning,” arXiv preprint
arXiv:1509.06113, 2015.

L. Pinto and A. Gupta, “Supersizing self-supervision: Learning to grasp
from 50k tries and 700 robot hours,” arXiv preprint arXiv:1509.06825,
2015.

S. Levine, P. Pastor, A. Krizhevsky, and D. Quillen, “Learning hand-eye
coordination for robotic grasping with deep learning and large-scale data
collection,” arXiv preprint arXiv:1603.02199, 2016.

M. Huber, W. S. MacDonald, and R. A. Grupen, “A control basis for
multilegged walking,” in IEEE International Conference on Robotics
and Automation, Apr 1996.

S. Sen and R. Grupen, “Integrating task level planning with stochastic
control,” University of Massachusetts Amherst, Tech. Rep. UM-CS-
2014-005, 2014.

J. A. Coelho Jr and R. Grupen, “A control basis for learning multifin-
gered grasps,” 1997.

D. Ruiken, M. W. Lanighan, and R. A. Grupen, “Postural modes and
control for dexterous mobile manipulation: the umass ubot concept,” in
IEEE-RAS International Conference on Humanoid Robots, 2013.

M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating system,”
in ICRA workshop on open source software, vol. 3, no. 3.2, 2009, p. 5.
H.-T. Jung, T. Takahashi, and R. A. Grupen, “Human-robot emergency
response-experimental platform and preliminary dataset technical re-
port# um-cs-2014-006,” 2014.

T. Tieleman and G. Hinton, “Lecture 6.5-rmsprop: Divide the gradient
by a running average of its recent magnitude,” COURSERA: Neural
Networks for Machine Learning, vol. 4, p. 2, 2012.

B. Calli, A. Singh, A. Walsman, S. Srinivasa, P. Abbeel, and A. M.
Dollar, “The ycb object and model set: Towards common benchmarks
for manipulation research,” in International Conference on Advanced
Robotics, 2015.

P. R. Zelazo, “The development of walking: new findings and old
assumptions,” Journal of Motor Behavior, vol. 15, no. 2, pp. 99-137,
1983.

	Introduction
	Technical Approach
	Closed-loop Controller Dynamics
	uBot-6 Mobile Manipulator
	Self-Supervision via Controller State
	Network Architecture

	Experimental Methodologies
	Results
	Conclusion and Future Work

