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Abstract—In this paper, a multi-agent search scheme is
presented that supports the recognition of activities and, thus,
learning methods for cooperative human-robot interaction. In
our approach, stochastic models of human search activity
are used to estimate state for HRI. The robot updates a
Probabilistic Distribution Function of the target object using
the observations and the estimated state of human peers. By this
means the robot can choose places to search to compensate the
behavior of human peers. This paper also presents an implicit
interface design for robot assisted tasks, which allows the robot
to infer the intention of the user and to provide assistance
autonomously. It reduces the cognitive workload of the user and
therefore is useful for elder care applications. The effectiveness
and the efficiency of the proposed approaches are demonstrated
in the experimental results.

I. INTRODUCTION

There has been considerable recent interest in addressing
the problem of robot search. The applications range from
emergency response to in-home elder care. In search op-
erations, a team of intelligent agents can provide a robust
solution with greater efficiency than can be achieved by
single agents, even with comparatively superior mobility and
sensors. Our vision for search problem solving is that human
and robots will work as partners, leveraging the capabilities
of each. Human-robot teams are used in Urban Search
and Rescue (USAR) [9], [10]. In these work robots are
teleoperated and used mainly as tools to search for survivors
and objects. There is inadequate computational support for
coordinating human and robots as peers in search tasks,
which is the main focus of this paper. In our approach the
robot learns to recognize and complement a human’s search
activity.

Recently intension estimation for robot human interaction
has been researched to make robot assist human. There has
been recent work aimed at recognizing human activity as a
means of inferring intention. In [13], a vision based approach
is used to infer the intentions of other agents. In [11], a
hierarchical hidden Markov model is used to recognize a
set of complex indoor activities. However, the approach of
integrating intention estimation with robot planning is still
in need of investigation, especially in search tasks.

In this paper we present a multi-agent cooperation scheme
for search tasks. The autonomous search agent maintains
estimates of the probability density function (PDF) for the
object location and makes independent decisions about its
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search process. Cooperation is achieved by sharing percep-
tual information and intention among cooperating agents.
For robot teammates, explicit message transmission is used.
The human teammate is modeled as an agent without this
mode of communication. In this case, the robot agents infer
the current state and intention of the human peer using a
model of human search activity acquired in the learning
session. By inferring human search states, the robot chooses
compensative actions to achieve efficient cooperation with
human peers.

A second area of our work is the problem of user interface
design for robot assistance. Cognitive load is an important
factor for human robot interaction and has been studied
considerably in the work on interface design [7], [6], [8].
Most of this work is based on explicit message transmission
without considering the potential for using predictions of
human intention. To reduce the mental stress in H-R in-
teraction, collaborative control [3], [S] was developed for
mobile autonomous robots. The robots work autonomously
until they run into a problem they can’t solve. At this point,
the robots ask the remote operator for assistance, allowing
human-robot interaction and autonomy to vary as needed. In
this paper, we discuss how collaborative control mechanisms
can be used for service robots in elder care applications. An
implicit interface design for robot assisted tasks is proposed,
which allows the robot to infer the intention of the user and
to provide assistance autonomously. It reduces the cognitive
workload of the user and therefore is useful for elder care
applications.

Interface Design 1. Is human searching for
something?

2. What's the target object?

3. Where is the next

location to search?

Search
Coordination

Fig. 1. A scenario of robot assisted search in home environment

The robot assisted search scenario is illustrated in Fig.
1 where some of the information that the robot needs to
know for efficient assistance is listed. The first two questions
are related to user interface design, which is used to inform
the robot what assistance is needed by human. The third
question is related to search coordination, where the robot



needs to plan the next move to cooperate with its human peer
in order to achieve the goal. In this paper we will present
our approach to search coordination first, and then discuss
the problem of user interface design.

This paper is organized as follows. Section 2 presents
our approach of human-robot cooperative search. An implicit
user interface design is proposed in Section 3. In Section 4
we present the experimental setup and results. Conclusions
and future work are presented in Section 5.

II. HUMAN-ROBOT COOPERATIVE SEARCH
A. Bayesian Search Strategy

The search problem can be represented in a Bayesian
framework, in which for a target r, the state vector of
its location #,. € X, in S is expressed in the form of a
probability distribution function (PDF) p,.(Z). Given a prior
PDF p,.(Zo|z0) = pr(Zo) of the target and the independent
observations z, the PDF at time step ¢ can be constructed
recursively using Bayes’ theorem. In the application of object
search to a living space, it is reasonable to assume that when
the search process starts, the target object is stationary and
not allowed to move until the search finishes. So we have
Pr(Zt|21:4—1) = pr(Zi—1|21.4-1). After each observation, the
PDF is updated according to the observation,

r(Ze|21:t) = Kpp(Ze—1]z1:4—1) - pr(2| %) 9]

Where K is the normalization factor and is given by,

K= 1//LpT’(ft|let71)pr(zt|ft)]dft )

A “one-step-lookahead” strategy [14] that maximizes
p(Z¢|z1:t—1), where Z; represents a “detection” event at time
t — 1, is used with very low computational overhead.
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Fig. 2 shows a schema-based representation of the search
behavior for a robot agent. The agent shares information
with other teammates using a Receptive module that receives
the perceptual information and intention of other agents, and
an Expressive module that broadcasts its observation result
and planned intention. In our previous work [14] explicit

(a) ®)

Fig. 3. Human data (a) Searching for a book; (b) Searching for a
screwdriver.

message transmission was used to coordinate autonomous
searching agents, where the Resv Msg Buffer and Send Msg
Buffer are used. An agent updates its local PDF map and
plans its actions accordingly when receiving observations
and the “next move” intentions from the other agents. For
more details of intelligent agent cooperative search using this
message sharing method refer to [14].

B. Human Peer Modeling

Human peers can be modeled as agents without explicit
message transmission. As shown in Fig. 2, the Human
Activity Estimator and Expressive Gesture are used to replace
the message sharing modules to communicate with human
peers. In this paper, we focus on the receptive module that
enables the robot to estimate human activity and to provide
complementary behavior. At time ¢ the human activity esti-
mator should provide two types of information: (i) Human
action sequence X; = (xo, x1, ..., 1), which is the sequence
of locations human has been in a search trial; and (ii) Human
action prediction x;y1, which is the predicted location of
human in time ¢ + 1.

1) Dwelling State Detection: A reasonable human obser-
vation model is necessary for the robot to estimate the impact
of human search actions. Our experimental data reveals that
a human searcher will dwell in places where objects are
likely to be found, which suggests using human observation
models with different kernel sizes for dwelling and walking
states. Therefore, a preprocessing step is used to distinguish
dwelling and walking states for all human tracking points
o(t) = [z,y,dy/di, dy/d;]. A K-means algorithm is used to
cluster the state vectors and to distinguish if the tracking
points are in dwelling or walking states. For cluster C;, if

\/ d;iz + d;l? > Twaik (Twair is a predefined threshold), all
state vectors o}, € C; are considered as walking states.

2) Activity Modeling with HMM: Given observed state
vectors, stochastic model can be constructed for human
searching activities. HMMs are powerful tool for modeling
sequential phenomena, and have been successfully used in
applications involving speech and sound. Recently, HMMs
have been used for activity understanding, showing a signifi-
cant potential for their use in activity modeling and inferring
intent [12].



In our work HMMs are used to model the search activity
of human beings, where the hidden states denote search lo-
cations, and the observed outputs are human tracking results
with the camera network. HMM parameters A = (A, B, 7)
are trained by observing the action sequence of the human
subject for a period of time. the Baum-Welch algorithm
[12] is used to train model parameter \; corresponding to
the search activity class c¢;. Equation 3 modifies transition
weights and statistics of the models using a generalized
expectation-maximization algorithm.

P(O|)\) = ZP (0, X|\) (3)

Given a trained HMM with parameters A = (A, B, ), the
Viterbi algorithm (Equation 4) produces the most probable
successive states from an observation sequence.

P*(O|\) = argmaxx P(O, X|\) 4)

where the joint distribution can be factorized as follows,

T
plailzo) [ platlze1)ploda) — (5)
t=1

“(0,X|\) =

Human action sequence X; = (x,,x1,...x¢) represents
the locations where human subjects paused in the course of
a search trial. Human observation model pj,(z¢|z;) can be
represented by a Gaussian distribution for simplicity. Using
X, and py, the robot updates the PDF using Bayes’ theorem
(Equation 1). Given the current hidden state x; and the
transition matrix A, the state x;y; can be predicted, which
indicates the location where a human subject is likely to
make the next observation. The robot selects actions based
on the inferred hidden state in the following way:

(1) At time ¢, the robot infers the hidden action sequence
X, and predicts the next human search location x;1.

(2) The robot selects the action a; to complement the
search behavior of the human. Applying Bayes’ theorem,
a temporary PDF Pt/ is constructed by updating robot’s PDF
P, with the estimated human location sequence X; along
with the human observation model p;, therein. x4 ; is used
as an Inhibition Message I, () [14] to update P, as well to
bias the robot to avoid searching locations where the human
subject is likely to go in the next step.

(3) The robot uses Pt/ to plan the next action. A value
v; is calculated for each grid node indicating the benefit of
visiting this node. Given Pt/ for an agent, v; is calculated by,

vi= Y plan) (©6)

grEVY

where V; is the set of all grid nodes in the observation
field, i.e., that can be observed when the agent is visiting
grid node g;.

(4) The robot moves to the planned location and perform
observation. The PDF P, of robot is updated in Bayes’
theorem using its observation result. Fig. 4 illustrates the

Fig. 4. PDF update for a search agent. (a) Before observation. (b) Update
agent’s PDF with current observation.

update of PDF map using the Bayes’ theorem. The steps
(1)-(4) iterate until the target object is found by the robot or
human.

3) Learning from Demonstration: This paper adopts the
perspective that cooperative multi-agent systems depend on
independent skills and behavior in individual agents. We
previously proposed using the detection history and daily
activity density of the user to refine the prior PDF over
objects to improve search efficiency [14]. In this paper we
propose to refine the prior PDF over objects using search
activity density (SAD) of human. SAD reflects the spatial
probability of an object by observing the behavior of human
demonstrations of search activity directed at the object.

The influence of a dwell point demonstrated by a human
demonstrator on the prior PDF is determined by the Cartesian
observation error ellipsoid, which can be estimated by the
triangulation Jacobian J for a camera pair. If D is the
baseline between two cameras and yp and v are the
respective headings to the target, the uncertainty Jacobian
is given as follows,

—sin~yr, cos vy
— sin® (1)

D sinyg COS YR

J=—— |
sin”(yg — 1) | sin®(vg)

The eigenvalues and eigenvectors of J.J7 define the prin-
ciple directions of error amplification in stereo triangulation.
The probability of observing target r at an occupancy grid
T is given by:

pu(Er) = N Y K (% — &) 7)

where 7 represents the locations where human dwell s-
tates are observed, D; is the total number of dwell points, and
K (+) is a suitable kernel function (here, a Gaussian), which
is scaled and rotated using the eigenvalues and eigenvectors
of JJT.

The robot should be able to compensate for the actions of a
human instead of simply imitating the behavior. It should use
a combination of detection history, daily activity density and
searching activity density to build a prior PDF. In addition,
from the demonstration of human search, it is possible to
infer where human do not search (e.g., the area underneath
the table is inaccessible to many elders). When the robot is
updating the prior using the detection history, the location x



has higher weight to affect the prior PDF if x € A, where A
is a set of locations that are inaccessible to the human. The
robot learns to examine the places where the human does not
go, and to compensate for search preferences demonstrated
by human beings.

III. INTERFACE DESIGN FOR IMPLICIT COOPERATION

To cooperate with human peers autonomously, the robot
also needs to know when to search and what is the target
object (first two questions in Fig. 1). This information is
usually conveyed through a GUI or voice control and may
increase the cognitive load of the user. This problem becomes
more severe in elder care.

In collaborative control frameworks, robots work au-
tonomously until they run into a problem they can’t solve.
At this point, the robots ask a remote operator for assistance.
A similar mechanism is used in our work, where the robot
estimates the human’s intention and autonomously provides
assistance without explicit command instructions to do so.
We call this approach as Implicit Interface for service robot.
The explicit and implicit user interfaces are categorized as
follows:

(i) an explicit interface conveys explicit tasks to the robot
to implement a coordination plan conceived by the operator.

(i1) an implicit interface infers robot tasks from the obser-
vations of human activity. The robot asks questions to verify
the inference results when the recognition confidence is low.
The autonomy of the robot is adjusted dynamically according
to the recognition confidence and the cognitive load of the
user.

A Hidden Markov Model (HMM) is used in this section to
recognize human activities. It is possible to train the recogni-
tion on a partial sequence of the human search locations and
then perform a classification on the observation data. Our
experiments show that search activities for different objects
are distinguishable since human search patterns different for
different objects.

Given a trained HMM X = {A, B, r}, the probability
of a observation O = {o0;, 09, ...0,} can be calculated. The
model with maximum likelihood is chosen as the recognized
class. The activity classification problem can be formulated
to identify the class ¢;, (i = 1 : N) to which the trajectory
state sequence belongs. The basic formulation of the problem
is given by the maximization of a conditional probability as
in Equation 8. The classes are considered to be balanced in
our experiments.

P(Olc;)P(ci)
P(O)

The processes that support the implicit interface are elab-
orated as follows.

(a) The robot waits and observes human activities. After
an amount of data accumulated, the classification algorithm
is used to classify the observed human activities.

(b) If activity a; is detected (e.g., human is searching for
a book), the robot can choose to initiate a dialog with the

(®)

i* = argmaxz, P(¢;|0) = argmax;

human for verification. The cognitive load M, of user at time
t is to be limited to satisfy a threshold T,; throughout the
interaction. The robot initiates a dialog if M; < T,,,;. Oth-
erwise, the dialog is not allowed and the robot continues to
assist autonomously until better recognition results obtained.
Cognitive load can be described in several different ways. For
simplicity, M, is described in terms of verbal communication
density, which is the weighted sum of questions in a period
of time.

(c) Given user feedback on the verifying activity a;, the
robot starts assisting human.

In step (b), more information can be obtained from the
dialog with the human, such as which objects are related to
the activity a;. When generalizing the implicit interface from
search activity to other daily activities, it is important to infer
the objects that participate in a,. For search activity, usually
only one object involved. For other activities like reading,
multiple objects may be involved. Imagine an example of
applying the implicit interface to a reading activity. Two
objects (a book and a light) can be associated to this activity
in the form of prior knowledge. Due to the constraints on
cognitive load, the robot may only be allowed to assist
autonomously, in which case, robot will bring the book to
the user and turn on the light even it is not verified through
the dialog.

1V. EXPERIMENTAL RESULTS
A. Experimental Setup

Experiments in this paper were performed in a mock
apartment, which is 42 x 28 square foot a lab environment
as shown in Fig. 5 (a).

A hybrid camera network is deployed in our test envi-
ronment for human tracking. The camera network consists
of four color cameras (Sony EVI-D100 PTZ cameras) and
two ranging cameras (Microsoft Kinect sensors). The color
cameras perform tracking on captured frames using color
and edge features. Each time step, a pair of color cameras
is selected to determine the 3D location of people in the
environment. The ranging camera uses first order recursive
filter: B,,, = (1—«)B,,,+1. to integrate the new depth image
I, into the current 3D background model B,,, and tracks the
human in 3D space. The tracking results from color cameras
and ranging cameras are merged to provide global tracking.

The uBot-5 [4] is used as the mobile robot. A stereo vision
system with pan-tilt platform is mounted on the robot to
perform visual search. In this paper, since we focus on in-
vestigating the receptive behavior and there are no expressive
gestures performed by the robot, it is reasonable to assume
that human behavior is not influenced by robot actions. The
real world data of the human peer is recorded and replayed
in simulations, in which the simulated uBot-5 cooperates
in search tasks to complement the human teammate. The
simulated uBot-5 and environment were developed using the
Microsoft Robotics Development Studio. The target object is
simulated as a colored 3D model that can be visually detected
by the simulated uBot-5 using Camshift [1] algorithm. In
addition to the simulated environment, our group also has
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Fig. 5. (a) Physical robot (b) Simulated robot and environment for
experiments

began to experiment with real robots that interact with and
without human search activities (Fig.5). We posted a video
showing the qualitative result of H-R cooperative search in
a real lab environment at [2].

B. Efficiency of Human-Robot Cooperative Search

We first evaluate the efficiency of the proposed cooperative
search strategy. Eight subjects of convenience were recruited
for this study. Among these participants, 3 were colleagues
of the authors and are familiar with the lab environment.
The remaining 5 were unfamiliar with the search room and
received a short description of the room configuration and
furniture. Two search activities were considered, searching
for a book and searching for a screwdriver. In each trial
the target object was placed randomly in possible locations
(e.g., a book on the shelf, table or on the couch) in the
environment. The participants are asked to search for a
designated target objects in each trial. As shown in Fig.
3, subjects presented different search patterns for different
objects. For instance, the participants go to bookcases and
tables to search the book, and toolboxes when searching for
the screwdriver. Each participant performed 5 search trials
for each object for a total dataset of 40 trials. 24 trials were
used to train the activity model and the remaining 16 trials
were used to evaluate the result.

We compare the efficiency of four search strategies: (1)
Single human search; (2) Single robot search; (3) H-R team
search without cooperation, where human and robot search
simultaneously but independently without communication;
(4) H-R team search with cooperation, which is the proposed
strategy. For the 16 datasets used for evaluation (for each
object), the “time to detect” cost of different search strategies
were measured. The experiments in this part use the explicit
interface, where subjects send command to robot directly,
and the team starts searching together.

Table I gives the average time cost of the search strategies.
It can be seen that the search efficiency with the single robot
is comparable to human (The average time cost to find an
object on all trials is 211.9s for single human and 219.8s for
single robot), which indicates that the robot is a qualified
search teammate for efficient cooperation. The time cost of
cooperative search is 29.6% less in average than that of non-
cooperative search for object book, and 13.4% for object
screwdriver, which indicates that the proposed cooperative
search is efficient.
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Fig. 6. Search efficiency (for Book)
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Fig. 7. Search efficiency (for Screwdriver)

Fig. 6 shows the comparison of search strategies in all
trials for searching the book. In all trials the cooperative
search is better than single human search. In 14 out of
16 trials the proposed cooperative search strategy is more
efficient than the single robot search without human peer.
In 14 out of 16 trials the performance of the proposed
cooperative search is better than or equal to that of the non-
cooperative strategy. There are some cases where cooperative
search is worse than non-cooperative strategy. The reason is
that sometimes the human will miss the target object when
checking a place, therefore inhibits the robot from going to
the same place and finding it. It suggests an improvement
of our approach by learning different observation models for
the human teammates with different searching capabilities,
which is beyond the scope of this paper. Fig. 7 shows similar
results for searching for the screwdriver. The experiments
show that the proposed cooperative search is efficient.

TABLE I
AVERAGE TIME COST WITH DIFFERENT SEARCH STRATEGIES. (SEC)

[ [ Human [ Robot [ No-Co [ Cooperation |

Book 234.1 217.6 181.0 127.4
Screwdriver 189.7 221.9 170.5 147.2
All Data 211.9 219.8 175.8 137.3

C. Interface Design Experiments

In this part the search efficiency of the explicit and
implicit user interface is compared. Firstly we measure the
classification accuracy of the partly observed trajectory of
subjects when searching for the book and the screwdriver.
Fig. 8 shows that the accuracy improves with the number of
observations. Given 40 seconds of observation, the robot is
able to predict the search activities with 75% accuracy. It can
be used as the time for the robot to initiate the dialog with



human to clarify the remaining ambiguity, if the subject’s
cognitive load is lower than a threshold M < Ty,r. In the
case of M > Ty,r, the robot waits longer to collect more
data for better human activity recognition.
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Fig. 8. Accuracy in search activity prediction

Then we evaluate the search efficiency when using implicit
interface design. With implicit interaction, the robot needs
time to predict what human is looking for, which causes
a delay for the subsequent cooperative search. We want to
evaluate if this delay causes a significant degradation of the
cooperative search efficiency. In all trials in this experiment,
the human search was started first. The robot waited for
40 seconds and then joined the human search. The search
efficiency with explicit and implicit interactions are given
in Fig. 9. It can be seen that both explicit and implicit
cooperations outperforms the non-cooperative search. The
average time cost with implicit interactions is only 17s
(13.4%) higher than that with the explicit interactions. The
dash line in Fig. 9 represents the actual driving time of the
robot. It shows a byproduct with using implicit cooperation
that it saves the driving and navigation cost of the robot,
which is very energy consuming.
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Fig. 9. Comparison in search efficiency

V. DI1SCUSSION AND CONCLUSION

In this paper we present a multi-agent cooperation scheme
for search tasks. The robot agents infer the current state and
intention of the human peer using human search activity
model that acquired in the learning session. By inferring
human state, the robot chooses complementary actions to
achieve efficient cooperation with human peers. An implicit
interface design for robot assisted tasks is also proposed in
this paper, which allows the robot to infer the intention of
the user and to provide assist autonomously. It reduces the
cognitive workload of the user and therefore is useful for

elder care applications. The experimental results show that
our approaches are effective and efficient.

In this paper, we focus on investigating the receptive
behavior of the robot, where the human subject is not highly
sensitive to the behavior of the robots. An example scenario
is a human subject and embedded in an array of stationary
surveillance cameras. However, our results show that this
models also applies in applications where the behavior of
the human subject can be altered by the robot’s presence
(e.g., H-R cooperation in a rescue-search team). The same
model makes relevant predictions about actions that improve
the performance of the team when informed by the two-
agent search history. It does not depend on which agents
contributed to the history given the assumption that the
human and robot have similar observation capabilities. In
the future, we plan to evaluate the added value (versus cost)
of modeling joint team activity on the performance of search
tasks.

In current stage we only evaluated the system with sim-
ulation experiments. Our group also has experience with
using physical robot in human-robot cooperative search. In
the near future, more experiments will be performed on the
physical robot. The application of implicit interface on other
daily activities such as reading and watching TV will be
investigated with real world experiments. The performance
of our approaches when the number of objects and activities
scale up will be evaluated. Future work also includes using
reinforcement learning to learn the expressive behaviors of
the robot to naturally communicate with human.
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